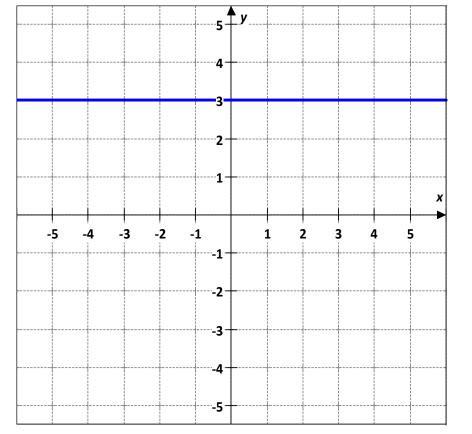
PreCalculusCoach.com

Parent Functions and Transformations Unit 1 Lesson 5

Students will be able to:

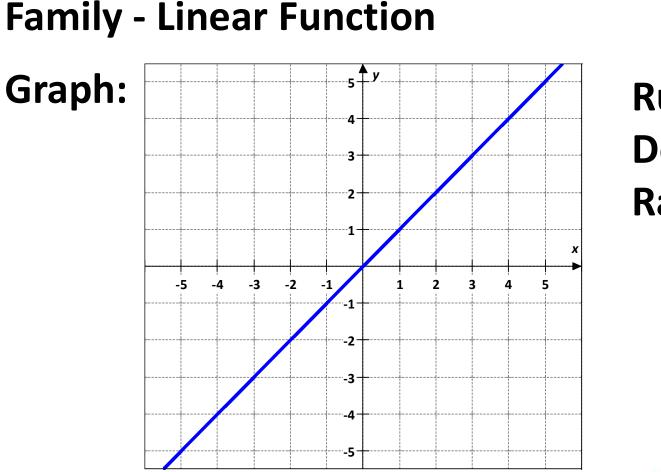
Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k)for specific values of k (both positive and negative); find the value of k given the graphs.

Key Vocabulary: Parent function Transformation Translation Dilation

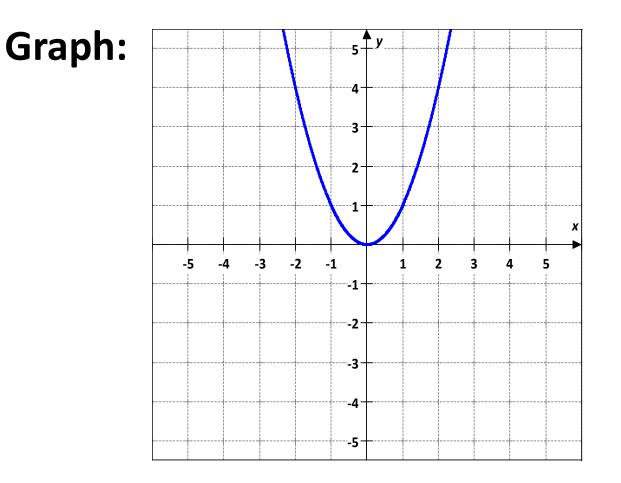


A family of functions is a group of functions with graphs that display one or more similar characteristics.

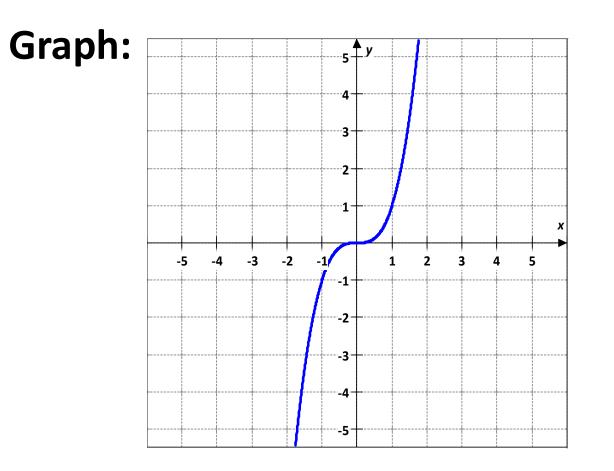
The Parent Function is the simplest function with the defining characteristics of the family. Functions in the same family are transformations of their parent functions.


Family - Constant Function

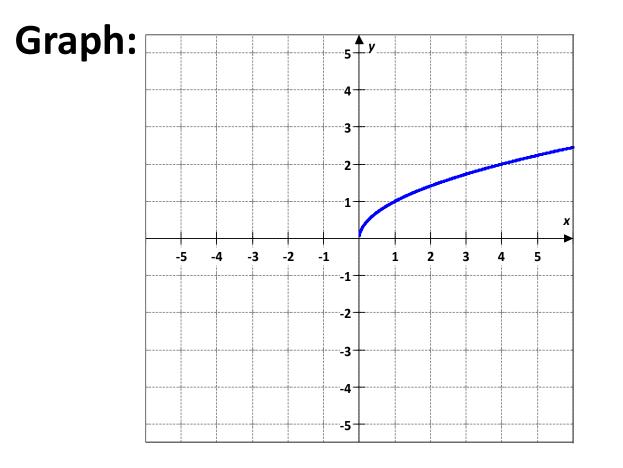
Rulef(x) = cDomain $= (-\infty, \infty)$ Range= [c]



Rule f(x) = xDomain $= (-\infty, \infty)$ Range $= (-\infty, \infty)$

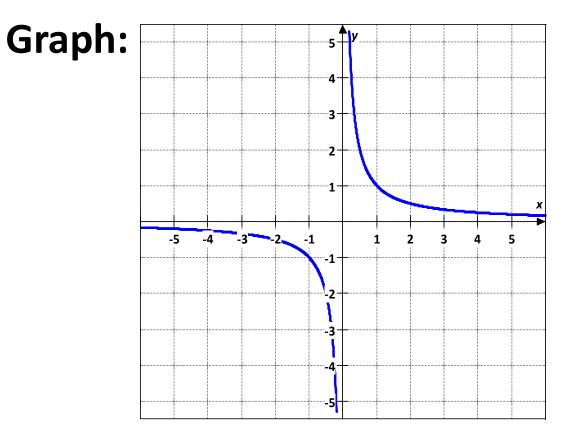

Family - Quadratic Function

Rule $f(x) = x^2$ Domain = $(-\infty, \infty)$ Range = $[0, \infty)$

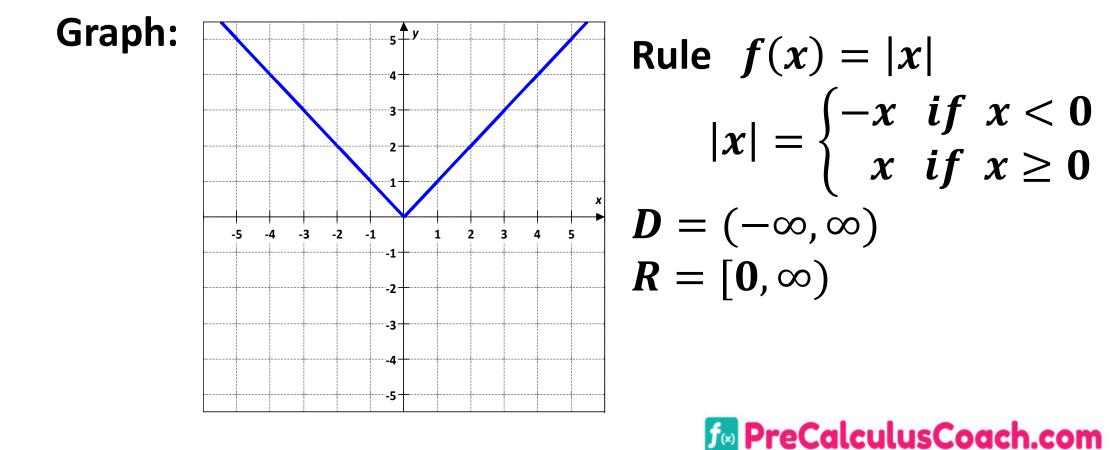


Family - Cubic Function

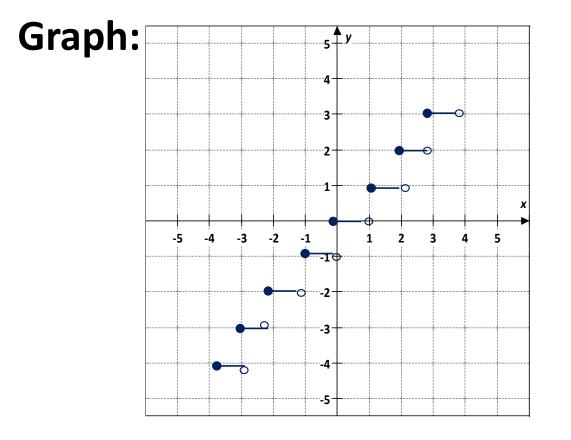
Rule $f(x) = x^3$ Domain = $(-\infty, \infty)$ Range = $(-\infty, \infty)$


Family - Square Root Function

Rule $f(x) = \sqrt{x}$ Domain $= [0, \infty)$ Range $= [0, \infty)$



Family - Reciprocal Function



Rule
$$f(x) = \frac{1}{x}$$

 $D = (-\infty, 0) \cup (0, \infty)$
 $R = (-\infty, 0) \cup (0, \infty)$

Family - Absolut Value Function

Family - Greatest Integer Function

Rule $f(x) = \llbracket x \rrbracket$ $D = (-\infty, \infty)$

$$R = All Integer$$

Transformations

A change in the size or position of a figure or graph of the function is called a transformation. *Rigid transformations* change only the position of the graph, leaving the size and shape unchanged. *Non rigid transformations* distort the shape of the graph.

Rigid transformations

Vertical Translations

Appearance in	Transformation of	Transformation of
Function	Graph	Point
$f(x) \to f(x) + a$	a units up	$(x,y) \to (x,y+a)$
$f(x) \to f(x) - a$	a units down	$(x,y) \rightarrow (x,y-a)$

Rigid transformations

Horizontal Translations

Appearance in	Transformation of	Transformation of
Function	Graph	Point
$f(x) \to f(x-b)$	b units right	$(x,y) \rightarrow (x+b,y)$
$f(x) \to f(x+b)$	b units left	$(x,y) \rightarrow (x-b,y)$

Rigid transformations

Reflections in x-axes

Appearance in	Transformation of	Transformation of
Function	Graph	Point
$f(x) \to -f(x)$	reflected in the x axis	$(x,y) \rightarrow (x,-y)$

Rigid transformations

Reflections in y-axes

Appearance in	Transformation of	Transformation of
Function	Graph	Point
$f(x) \to f(-x)$	reflected in the y axis	$(x,y) \rightarrow (-x,y)$

Non rigid transformations Vertical Dilations

Appearance in	Transformation of	Transformation of
Function	Graph	Point
$f(x) \rightarrow cf(x)$ $c > 1$	expanded vertically	$(x, y) \rightarrow (x, cy)$
$f(x) \rightarrow cf(x)$ $0 < c < 1$	compressed vertically	$(x, y) \rightarrow (x, cy)$

Non rigid transformations Horizontal Dilations

Appearance in	Transformation of	Transformation of
Function	Graph	Point
$ \begin{aligned} f(x) \to f(dx) \\ d > 1 \end{aligned} $	compressed horizontally	$(x, y) \rightarrow \left(\frac{x}{d}, y\right)$
$f(x) \rightarrow f(dx)$ $0 < d < 1$	expanded horizontally	$(x, y) \rightarrow \left(\frac{x}{d}, y\right)$

Sample Problem 1: Identify the parent function and describe the transformations.

a.
$$f(x) = (x - 1)^2$$

Sample Problem 1: Identify the parent function and describe the transformations.

a. $f(x) = (x - 1)^2$

Parent : $f(x) = x^2$

Transformation: Translation 1 unit right

Sample Problem 1: Identify the parent function and describe the transformations.

b.
$$f(x) = x^3 - 5$$

Sample Problem 1: Identify the parent function and describe the transformations.

b.
$$f(x) = x^3 - 5$$

Parent : $f(x) = x^3$

Transformation: Translation 5 units down

Sample Problem 1: Identify the parent function and describe the transformations.

c. f(x) = -|x+4|

Sample Problem 1: Identify the parent function and describe the transformations.

c. f(x) = -|x+4|

Parent : f(x) = |x|

Transformation: Reflection in x-axis Translation 4 units left

Sample Problem 1: Identify the parent function and describe the transformations.

d.
$$f(x) = 3x^2 + 7$$

Sample Problem 1: Identify the parent function and describe the transformations.

d.
$$f(x) = 3x^2 + 7$$

Parent : $f(x) = x^2$

Transformation: Expand vertically by a factor of 3 Translation 7 units up

Sample Problem 2: Given the parent function and a description of the transformation, write the equation of the transformed function f(x).

a. Quadratic - expanded horizontally by a factor of 2, translated 7 units up.

Sample Problem 2: Given the parent function and a description of the transformation, write the equation of the transformed function f(x).

a. Quadratic - expanded horizontally by a factor of 2, translated 7 units up.

$$f(x) = \frac{1}{2}x^2 + 7$$

Sample Problem 2: Given the parent function and a description of the transformation, write the equation of the transformed function f(x).

b. Cubic - reflected over the *x* axis and translated 9 units down.

Sample Problem 2: Given the parent function and a description of the transformation, write the equation of the transformed function f(x).

b. Cubic - reflected over the x axis and translated 9 units down.

$$f(x)=-x^3-9$$

Sample Problem 2: Given the parent function and a description of the transformation, write the equation of the transformed function f(x).

c. Absolute value - translated 3 units up, translated 8 units' right.

Sample Problem 2: Given the parent function and a description of the transformation, write the equation of the transformed function f(x).

c. Absolute value - translated 3 units up, translated 8 units right.

f(x) = |x - 8| + 3

Sample Problem 2: Given the parent function and a description of the transformation, write the equation of the transformed function f(x).

d. Reciprocal - translated 1 unit up.

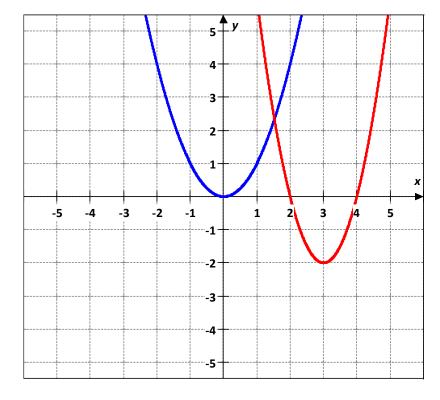
Sample Problem 2: Given the parent function and a description of the transformation, write the equation of the transformed function f(x).

d. Reciprocal - translated 1 unit up.

$$f(x) = \frac{1}{x} + 2$$

Sample Problem 3: Use the graph of parent function to graph each function. Find the domain and the range of the new function.

a.
$$h(x) = 2(x-3)^2 - 2$$


Sample Problem 3: Use the graph of parent function to graph each function. Find the domain and the range of the new function.

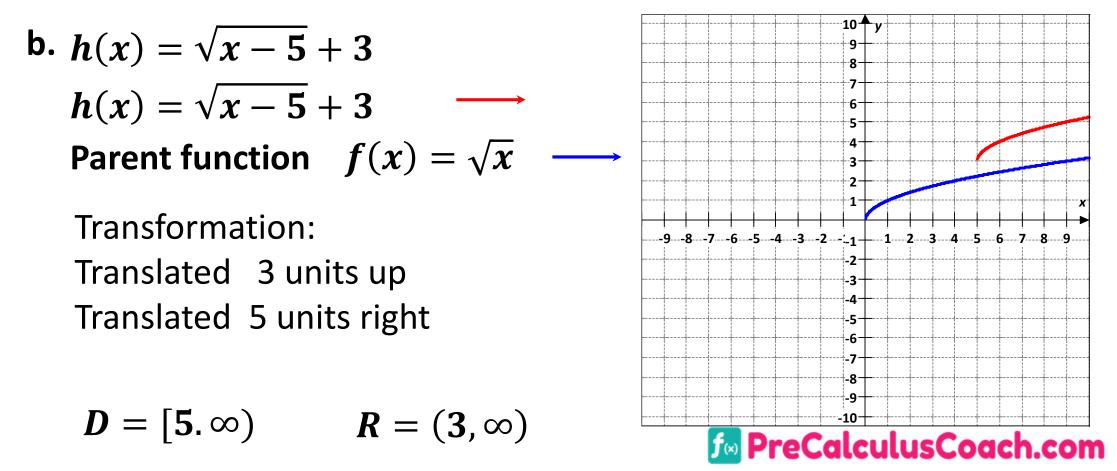
a.
$$h(x) = 2(x-3)^2 - 2$$

 $h(x) = 2(x-3)^2 - 2$
Parent function $f(x) = x^2$

Transformation:

Compressed horizontally by a factor of 2 Translated 2 units down Translated 3 units right

$$D = (-\infty, \infty)$$
 $R = (-2, \infty)$

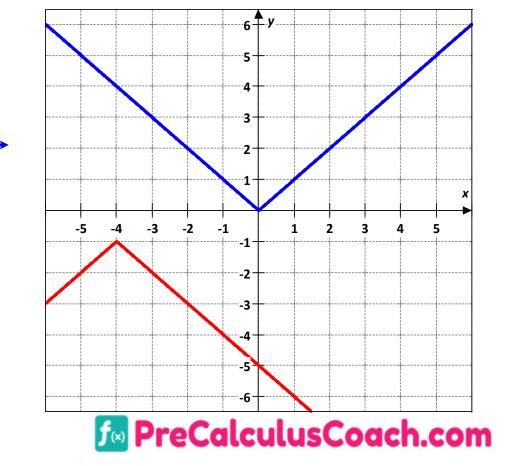

PreCalculusCoach.com

Sample Problem 3: Use the graph of parent function to graph each function. Find the domain and the range of the new function.

b. $h(x) = \sqrt{x-5} + 3$

Sample Problem 3: Use the graph of parent function to graph each function. Find the domain and the range of the new function.

Sample Problem 3: Use the graph of parent function to graph each function. Find the domain and the range of the new function.


c.
$$h(x) = -|x+4| - 1$$

Sample Problem 3: Use the graph of parent function to graph each function. Find the domain and the range of the new function.

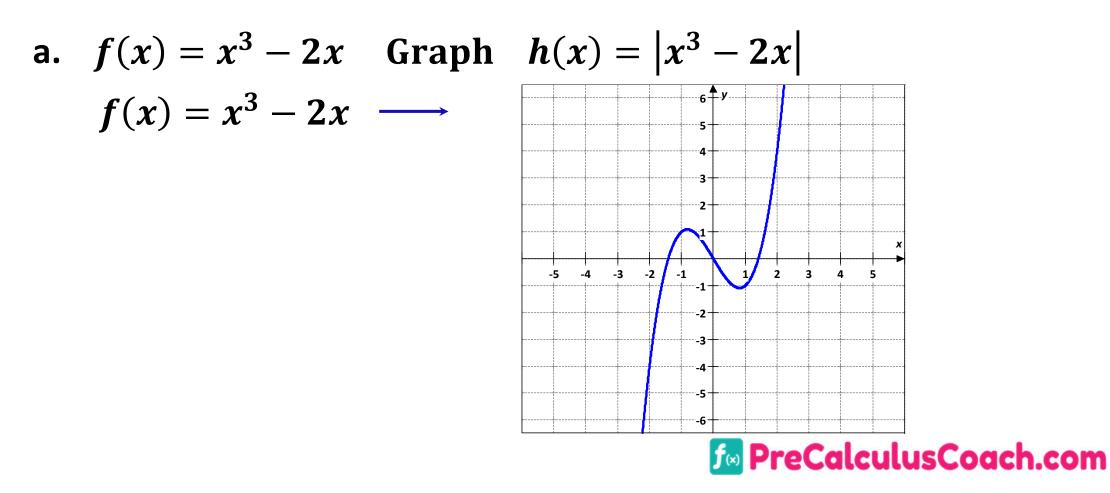
c.
$$h(x) = -|x + 4| - 1$$

 $h(x) = -|x + 4| - 1$
Parent function $f(x) = |x|$
Transformation:
Reflected in the x axis
Translated 1 unit down
Translated 4 units left

$$D = (-\infty, \infty)$$
 $R = (-\infty, -1]$

Transformations with Absolute Value h(x) = |f(x)|

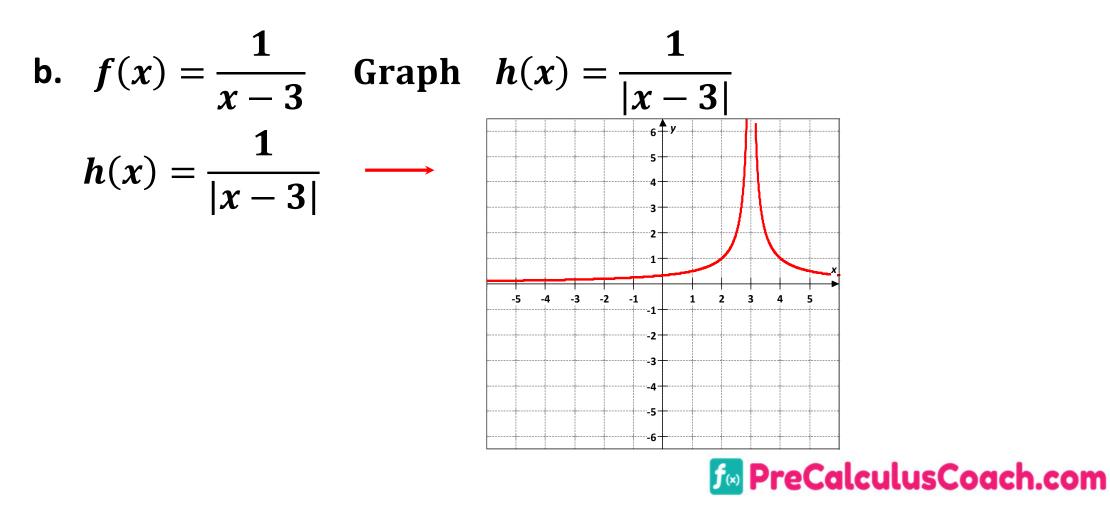
This transformation reflects any portion of the graph of f(x) that is below the x -axis so that it is above the x -axis.


Transformations with Absolute Value h(x) = f(|x|)

This transformation results, in the portion of the graph of f(x) that is to the left of the y-axis, being replaced by a reflection of the portion to the right of the y-axis.

a.
$$f(x) = x^3 - 2x$$
 Graph $h(x) = |x^3 - 2x|$

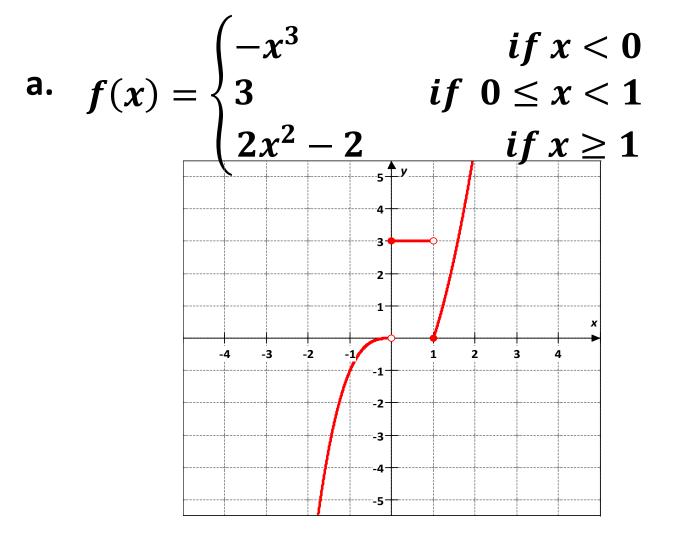
a.
$$f(x) = x^3 - 2x$$
 Graph $h(x) = |x^3 - 2x|$
 $h(x) = |x^3 - 2x| \longrightarrow$



b.
$$f(x) = \frac{1}{x-3}$$
 Graph $h(x) = \frac{1}{|x-3|}$

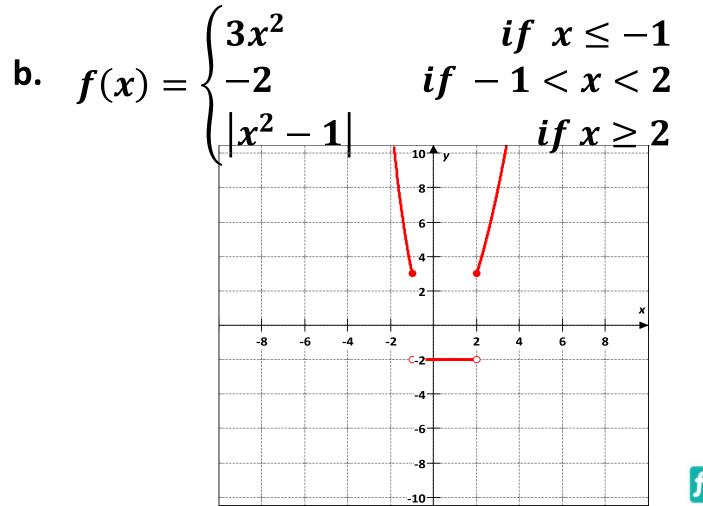
Sample Problem 4: Graph each function.

b. $f(x) = \frac{1}{x-3}$ Graph $h(x) = \frac{1}{|x-3|}$ $f(x) = \frac{1}{x-3}$ \longrightarrow -3 -2 --1 -5 -4 -3 -2 -1 3 2 4 -1 -2 -3 -4 -5 -6 PreCalculusCoach.com



Graph a Piecewise-Defined Function

a.
$$f(x) = \begin{cases} -x^3 & \text{if } x < 0\\ 3 & \text{if } 0 \le x < 1\\ 2x^2 - 2 & \text{if } x \ge 1 \end{cases}$$



b.
$$f(x) = \begin{cases} 3x^2 & \text{if } x \leq -1 \\ -2 & \text{if } -1 < x < 2 \\ |x^2 - 1| & \text{if } x \geq 2 \end{cases}$$

