for PreCalculusCoach.com
Arithmetic Sequences and Series Unit 10 Lesson 2

Students will be able to:

Recognize, write, and find the nth terms of arithmetic sequences.
Find nth partial sums of arithmetic sequences. Key Vocabulary:
Arithmetic sequence
Common difference

Arithmetic Sequences and Series

Arithmetic Sequences

An arithmetic sequence is an ordered list of terms in which the difference between consecutive terms is constant.

This constant is called the common difference d.
If you subtract the first term from the second term for any two consecutive terms of the sequence, you will arrive at the common difference $\boldsymbol{d}=\boldsymbol{a}_{\boldsymbol{n}}-\boldsymbol{a}_{\boldsymbol{n} \boldsymbol{1}}$.

Arithmetic Sequences and Series

Sample Problem 1: Decide whether each sequence is arithmetic.

a. 4, 812,16

Sample Problem 1: Decide whether each sequence is arithmetic.

$$
\begin{gathered}
\text { a. } 4,812,16 \ldots \\
8-4=4 \\
12-8=4 \\
16-12=4 \\
d=4
\end{gathered}
$$

This sequence is arithmetic.

Arithmetic Sequences and Series

Sample Problem 1: Decide whether each sequence is arithmetic.
b. $-8,-1,1,8 \ldots \ldots \ldots$

Arithmetic Sequences and Series
Sample Problem 1: Decide whether each sequence is arithmetic.

$$
\text { b. } \begin{aligned}
-8,-1,1,8 & \ldots \ldots \ldots \\
-1-(-8) & =-1+8=7 \\
1-(-1) & =1+1=\mathbf{1} \\
8-1 & =7
\end{aligned}
$$

This sequence is not arithmetic.

Arithmetic Sequences and Series

The explicit formula for the general term of an arithmetic sequence is $\boldsymbol{a}_{\boldsymbol{n}}=\boldsymbol{a}_{1}+(\boldsymbol{n}-\mathbf{1}) \boldsymbol{d}$.

$$
\begin{array}{ll}
a_{1}-\text { the first term } & d-\text { the common difference } \\
n-\text { the number of term } & a_{n}-\text { the general term or nth term }
\end{array}
$$

The recursive formula for the general term of an arithmetic sequence is $\boldsymbol{a}_{\boldsymbol{n}}=\boldsymbol{a}_{\boldsymbol{n}-\mathbf{1}}+\boldsymbol{d}$.
The terms between any two nonconsecutive terms of an arithmetic sequence are called arithmetic means.

Arithmetic Sequences and Series
Sample Problem 2: Find the first four terms and common difference of each arithmetic sequence.

$$
\text { a. } \quad a_{n}=2 n+2
$$ each arithmetic sequence.

$$
\text { a. } \begin{aligned}
a_{n} & =2 n+2 \\
a_{1} & =2 * 1+2=2+2=4 \\
a_{2} & =2 * 2+2=4+2=6 \\
a_{3} & =2 * 3+2=6+2=8 \\
a_{4} & =2 * 4+2=8+2=10 \\
d & =12-10=2 \\
d & =2
\end{aligned}
$$

Arithmetic Sequences and Series
Sample Problem 2: Find the first four terms and common difference of each arithmetic sequence.
b. $\quad a_{n}=3-2 n$ each arithmetic sequence.
b. $a_{n}=3-2 n$

$$
\begin{aligned}
a_{1} & =3-2 * 1=3-2=1 \\
a_{2} & =3-2 * 2=3-4=-1 \\
a_{3} & =3-2 * 3=3-6=-3 \\
a_{4} & =3-2 * 4=3-8=-5 \\
d & =7-(-5)=-7+5=-2 \\
d & =-2
\end{aligned}
$$

Arithmetic Sequences and Series

Sample Problem 3: Find the specified term of each arithmetic

 sequence.a. 22th term =?

$$
a_{1}=-1, \quad d=3
$$

Arithmetic Sequences and Series
Sample Problem 3: Find the specified term of each arithmetic sequence.
a. 22th term =?
$a_{1}=-1$
$d=3$
$n=22$

$$
\begin{aligned}
& a_{n}=a_{1}+(n-1) d \\
& a_{22}=-1+(22-1) * 3 \\
& a_{22}=-1+21 * 3 \\
& a_{22}=-1+63 \\
& a_{22}=62
\end{aligned}
$$

Arithmetic Sequences and Series

Sample Problem 3: Find the specified term of each arithmetic

 sequence.b. 43 th term $=$?
$a_{1}=13$,
$d=12$

Arithmetic Sequences and Series
Sample Problem 3: Find the specified term of each arithmetic sequence.
b. 43th term $=$? $\quad a_{1}=13 \quad d=12 \quad n=43$

$$
\begin{aligned}
& a_{n}=a_{1}+(n-1) d \\
& a_{43}=13+(43-1) * 12 \\
& a_{43}=13+42 * 12 \\
& a_{43}=13+504 \\
& a_{43}=517
\end{aligned}
$$

Arithmetic Sequences and Series

An Arithmetic Series

An arithmetic series is the indicated sum of the terms of an arithmetic sequence.

$$
a_{1}+a_{2}+a_{3}+\ldots \ldots . .+a_{n}
$$

The sum of the first \boldsymbol{n} terms of the arithmetic series is called the \boldsymbol{n} th partial sum and is denotes $\boldsymbol{S}_{\boldsymbol{n}}$.

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \quad S_{n}=\frac{n}{2}\left(2 a_{1}+(n-1) * d\right)
$$

Arithmetic Sequences and Series

Sample Problem 4: Find the indicated sum for each sequence.
a. $a_{1}=4$, $d=-4 \quad S_{12}=?$

Arithmetic Sequences and Series
Sample Problem 4: Find the indicated sum for each sequence.

$$
\text { a. } \begin{aligned}
a_{1} & =4, \quad d=-4, \quad n=12 \quad S_{12}=? \\
S_{n} & =\frac{n}{2}\left(2 a_{1}+(n-1) * d\right) \\
S_{12} & =\frac{12}{2}(2 * 4+(12-1) *(-4)) \\
S_{12} & =\frac{12}{2}(8+11 *(-4)) \\
S_{12} & =\frac{12}{2}(8-44)
\end{aligned}
$$

$$
S_{12}=6 *(-36) \quad S_{12}=-216
$$

Arithmetic Sequences and Series

Sample Problem 4: Find the indicated sum for each sequence.

$$
\text { b. }-1,5,11,17 \ldots \ldots \ldots \ldots . S_{30}=\text { ? }
$$

Arithmetic Sequences and Series
Sample Problem 4: Find the indicated sum for each sequence.
b. $a_{1}=-1, \quad n=30 \quad S_{30}=$?

$$
\begin{aligned}
d & =11-5=6 \\
S_{n} & =\frac{n}{2}\left(2 a_{1}+(n-1) * d\right) \\
S_{30} & =\frac{30}{2}(2 *(-1)+(30-1) * 6) \\
S_{30} & =\frac{30}{2}(-2+29 * 6) \\
S_{30} & =\frac{30}{2}(-2+174) \\
S_{30} & =15 * 172 \quad S_{30}=2,580
\end{aligned}
$$

