\qquad Period: \qquad Date: \qquad

Arithmetic Sequences and Series Guided Notes

Arithmetic Sequences

An arithmetic sequence is an ordered list of terms in which the difference between consecutive terms is constant.
This constant is called the common difference d.
If you subtract the first term from the second term for any two consecutive terms of the sequence, you will arrive at the common difference $\boldsymbol{d}=\boldsymbol{a}_{\boldsymbol{n}}-\boldsymbol{a}_{\boldsymbol{n - 1}}$.

Sample Problem 1: Decide whether each sequence is arithmetic.
a. $4,812,16$ \qquad
b. $-\mathbf{8},-1,1,8$ \qquad

The explicit formula for the general term of an arithmetic sequence is $a_{n}=a_{1}+(n-1) d$.
a_{1} - the first term
n - the number of term
d - the common difference
a_{n} - the general term or nth term
The recursive formula for the general term of an arithmetic sequence is $a_{n}=a_{n-1}+d$.
The terms between any two nonconsecutive terms of an arithmetic sequence are called arithmetic means.
Sample Problem 2: Find the first four terms and common difference of each arithmetic sequence.
a. $\quad a_{n}=2 n+2$
b. $\quad a_{n}=3-2 n$
\qquad
\qquad Date: \qquad

Arithmetic Sequences and Series Guided Notes

Sample Problem 3: Find the specified term of each arithmetic sequence.
a. $\quad 22$ th term $=$?

$$
a_{1}=-1, \quad d=3
$$

b. \quad 43th term =?
$a_{1}=13, \quad d=12$

An Arithmetic Series

An arithmetic series is the indicated sum of the terms of an arithmetic sequence.
$a_{1}+a_{2}+a_{3}+\ldots \ldots .+a_{n}$
The sum of the first \boldsymbol{n} terms of the arithmetic series is called the \boldsymbol{n} th partial sum and is denotes $\boldsymbol{S}_{\boldsymbol{n}}$.
$S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \quad S_{n}=\frac{n}{2}\left(2 a_{1}+(n-1) * d\right)$
Sample Problem 4: Find the indicated sum for each sequence.
a. $\quad a_{1}=4, \quad d=-4$
$S_{12}=$?
\qquad

Arithmetic Sequences and Series Guided Notes

b. $-1,5,11,17$
$S_{30}=$?

