for PreCalculusCoach.com Polar Coordinates

Unit 9 Lesson 1

Students will be able to:

Understand the polar coordinates and distance formula for polar coordinates.

Key Vocabulary:

- Polar Coordinates
- Distance Formula for Polar Coordinates

POLAR COORDINATES

Polar Coordinates

Polar Coordinates are a pair of coordinates locating the position of point in a plane, with the first coordinate being the length of the straight line (r) connecting to the point from the origin and second the angle (θ) made by this line with a fixed line.

Mathematically:

Polar coordinates are represented as $P(r, \theta)$.

POLAR COORDINATES

Re-writing same Polar Coordinates

Polar coordinates can be re-written by adding or subtracting a certain angle from the given angle. Depending on the angle, the sign with radius changes between positive and negative.

Mathematically,

If there is a polar coordinate $P(r, \theta)$, then similar coordinates can be written by adding(or subtracting) $k \pi\left(k 180^{\circ}\right)$ to the given angle.

- If \boldsymbol{k} is even, then the sign of \boldsymbol{r} remains positive.
- If \boldsymbol{k} is odd, then the sign of \boldsymbol{r} becomes negative.

POLAR COORDINATES

Problem 1: Find a different pair of polar coordinates for the point $\left(5,960^{\circ}\right)$ such that $0 \leq \theta \leq 180^{\circ}$ or $0 \leq \theta \leq \pi$.

POLAR COORDINATES

Problem 1: Find a different pair of polar coordinates for the point $\left(5,960^{\circ}\right)$ such that $0 \leq \theta \leq 180^{\circ}$ or $0 \leq \theta \leq \pi$.

Let $P(r, \theta)=P\left(5,960^{\circ}\right)$. We subtract multiples of 180° to make the angle between 0° and 180°.

$$
960^{\circ}-5\left(180^{\circ}\right)=960^{\circ}-900^{\circ}=60^{\circ}
$$

Now, 60° is between 0° and 180°, also since $k=5$ is odd, so $r=5$ is replaced with $r=-5$.

$$
\rightarrow P\left(5,960^{\circ}\right)=P\left(-5,60^{\circ}\right)
$$

POLAR COORDINATES

Distance Formula for Polar Coordinates

If we have two polar coordinates $P_{1}\left(r_{1}, \theta_{1}\right)$ and $P_{2}\left(r_{2}, \theta_{2}\right)$, the distance between the two points (represented as $P_{1} P_{2}$) is given by:

$$
\text { Distance } P_{1} P_{2}=\sqrt{r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \left(\theta_{2}-\theta_{1}\right)}
$$

POLAR COORDINATES

Problem 2: Find the distance between the points $\left(2,30^{\circ}\right)$ and $\left(5,120^{\circ}\right)$.

POLAR COORDINATES

Problem 2: Find the distance between the points (2,30 $)$ and $\left(5,120^{\circ}\right)$.

Let $P_{1}\left(r_{1}, \theta_{1}\right)=P_{1}\left(2,30^{\circ}\right)$ and $P_{2}\left(5,120^{\circ}\right)$, then:
$P_{1} P_{2}=\sqrt{2^{2}+5^{2}-2(2)(5) \cos \left(120^{\circ}-30^{\circ}\right)}$
$P_{1} P_{2}=\sqrt{29-20 \cos \left(90^{\circ}\right)}$
$P_{1} P_{2}=\sqrt{29-20(0)}=\sqrt{29}$
$\rightarrow P_{1} P_{2}=5.39$

