\qquad
\qquad Date: \qquad

Polar Coordinates Guided Notes

Polar Coordinates

Polar Coordinates are a pair of coordinates locating the position of point in a plane, with the first coordinate being the length of the straight line (r) connecting to the point from the origin and second the angle (θ) made by this line with a fixed line.

Mathematically:

Polar coordinates are represented as $P(r, \theta)$.

Re-writing same Polar Coordinates

Polar coordinates can be re-written by adding or subtracting a certain angle from the given angle. Depending on the angle, the sign with radius changes between positive and negative.

Mathematically,

If there is a polar coordinate $P(r, \theta)$, then similar coordinates can be written by adding(or subtracting) $k \pi\left(k 180^{\circ}\right)$ to the given angle.

- If \boldsymbol{k} is even, then the sign of \boldsymbol{r} remains positive.
- If \boldsymbol{k} is odd, then the sign of \boldsymbol{r} becomes negative.

Problem 1: Find a different pair of polar coordinates for the point ($5,960^{\circ}$) such that $\mathbf{0} \leq \boldsymbol{\theta} \leq 180^{\circ}$ or $\mathbf{0} \leq \boldsymbol{\theta} \leq \boldsymbol{\pi}$.
\qquad Period: \qquad Date: \qquad

Polar Coordinates Guided Notes

Distance Formula for Polar Coordinates

If we have two polar coordinates $P_{1}\left(r_{1}, \theta_{1}\right)$ and $P_{2}\left(r_{2}, \theta_{2}\right)$, the distance between the two points (represented as $P_{1} P_{2}$) is given by:

$$
\text { Distance } \boldsymbol{P}_{\mathbf{1}} \boldsymbol{P}_{2}=\sqrt{\boldsymbol{r}_{\mathbf{1}}^{2}+\boldsymbol{r}_{2}^{2}-2 \boldsymbol{r}_{\mathbf{1}} \boldsymbol{r}_{2} \cos \left(\theta_{2}-\theta_{1}\right)}
$$

Problem 2: Find the distance between the points $\left(2,30^{\circ}\right)$ and $\left(5,120^{\circ}\right)$.

