Polar Coordinates Guided Notes

Polar Coordinates

Polar Coordinates are a pair of coordinates locating the position of point in a plane, with the first coordinate being the length of the straight line (r) connecting to the point from the origin and second the angle (θ) made by this line with a fixed line.

Mathematically:

Polar coordinates are represented as $P(r, \theta)$.

Re-writing same Polar Coordinates

Polar coordinates can be re-written by adding or subtracting a certain angle from the given angle. Depending on the angle, the sign with radius changes between positive and negative.

Mathematically,

If there is a polar coordinate $P(r, \theta)$, then similar coordinates can be written by adding(or subtracting) $k\pi(k180^\circ)$ to the given angle.

- If *k* is even, then the sign of *r* remains positive.
- If *k* is odd, then the sign of *r* becomes negative.

Problem 1: Find a different pair of polar coordinates for the point $(5,960^{\circ})$ such that $0 \le \theta \le 180^{\circ}$ or $0 \le \theta \le \pi$.

Name: _____ Period: _____ Date: _____ **Polar Coordinates** Guided Notes

Distance Formula for Polar Coordinates

If we have two polar coordinates $P_1(r_1, \theta_1)$ and $P_2(r_2, \theta_2)$, the distance between the two points (represented as P_1P_2) is given by:

Distance
$$P_1P_2 = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_2 - \theta_1)}$$

Problem 2: Find the distance between the points $(2, 30^{\circ})$ and $(5, 120^{\circ})$.