Polar Coordinates Exit Quiz

Part A Instructions: Choose the option that completes the sentence or answers the question.

1. A polar coordinate is represented by:

- a. P(x,y)
- b. $P(r, \theta)$
- C. P(z,t)
- d. None of these

2. In re-writing polar coordinates, the factor $k\pi$ can be:

- a. Added
- b. Subtracted
- c. Both a and b
- d. None of these

3. When adding the factor $k\pi$, if k is positive, then r becomes:

- a. negative
- b. positive
- c. 0
- d. None of these

4. The distance between two polar coordinates is given by:

a.
$$P_1P_2 = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_2 - \theta_1)}$$

b.
$$P_1P_2 = \sqrt{r_1^2 - r_2^2 - 2r_1r_2\cos(\theta_2 - \theta_1)}$$

c.
$$P_1P_2 = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_2 + \theta_1)}$$

d. None of these

Part B Instructions: Answer the question below.

5. Use distance formula to find the distance between $\left(3, \frac{\pi}{2}\right)$ and $\left(8, \frac{4\pi}{3}\right)$.

Polar Coordinates Exit Quiz

Answers

Part A Instructions: Choose the option that completes the sentence or answers the question.

- 1. A polar coordinate is represented by:
 - a. P(x, y)
 - b. *P*(*r*, θ)
 - C. P(z,t)
 - d. None of these
- 2. In re-writing polar coordinates, the factor $k\pi$ can be:
 - a. Added
 - b. Subtracted
 - c. Both a and b
 - d. None of these
- 3. When adding the factor $k\pi$, if k is positive, then r becomes:
 - a. negative
 - b. positive
 - c. 0
 - d. None of these
- 4. The distance between two polar coordinates is given by:

a.
$$P_1P_2 = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_2 - \theta_1)}$$

b. $P_1P_2 = \sqrt{r_1^2 - r_2^2 - 2r_1r_2\cos(\theta_2 - \theta_1)}$
c. $P_1P_2 = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_2 + \theta_1)}$

d. None of these

Part B Instructions: Answer the question below.

5. Use distance formula to find the distance between $(3, \frac{\pi}{2})$ and $(8, \frac{4\pi}{3})$.

Let
$$P_1(r_1, \theta_1) = P_1(3, \frac{\pi}{2})$$
 and $P_2(8, \frac{4\pi}{3})$, then:
 $P_1P_2 = \sqrt{3^2 + 8^2 - 2(3)(8)\cos\left(\frac{4\pi}{3} - \frac{\pi}{2}\right)}$
 $P_1P_2 = \sqrt{9 + 64 - 48\cos\left(\frac{5\pi}{6}\right)}$
 $\rightarrow P_1P_2 = 10.70$