\qquad Period: \qquad Date: \qquad

Polar Coordinates Exit Quiz

Part A Instructions: Choose the option that completes the sentence or answers the question.

1. A polar coordinate is represented by:
a. $P(x, y)$
b. $P(r, \theta)$
c. $P(z, t)$
d. None of these
2. In re-writing polar coordinates, the factor $k \pi$ can be:
a. Added
b. Subtracted
c. Both a and b
d. None of these
3. When adding the factor $k \pi$, if \boldsymbol{k} is positive, then r becomes:
a. negative
b. positive
c. 0
d. None of these
4. The distance between two polar coordinates is given by:
a. $\quad P_{1} P_{2}=\sqrt{r_{1}^{2}+r_{2}{ }^{2}-2 r_{1} r_{2} \cos \left(\theta_{2}-\theta_{1}\right)}$
b. $\quad P_{1} P_{2}=\sqrt{r_{1}{ }^{2}-r_{2}{ }^{2}-2 r_{1} r_{2} \cos \left(\theta_{2}-\theta_{1}\right)}$
c. $P_{1} P_{2}=\sqrt{r_{1}{ }^{2}+r_{2}{ }^{2}-2 r_{1} r_{2} \cos \left(\theta_{2}+\theta_{1}\right)}$
d. None of these

Part B Instructions: Answer the question below.
5. Use distance formula to find the distance between $\left(3, \frac{\pi}{2}\right)$ and $\left(8, \frac{4 \pi}{3}\right)$.
\qquad Period: \qquad Date: \qquad

Polar Coordinates Exit Quiz

Answers

Part A Instructions: Choose the option that completes the sentence or answers the question.

1. A polar coordinate is represented by:
a. $P(x, y)$
b. $P(r, \theta)$
c. $P(z, t)$
d. None of these
2. In re-writing polar coordinates, the factor $k \pi$ can be:
a. Added
b. Subtracted
c. Both a and b
d. None of these
3. When adding the factor $k \pi$, if k is positive, then r becomes:
a. negative
b. positive
c. 0
d. None of these
4. The distance between two polar coordinates is given by:
a. $P_{1} P_{2}=\sqrt{r_{1}{ }^{2}+r_{2}{ }^{2}-2 r_{1} r_{2} \cos \left(\theta_{2}-\theta_{1}\right)}$
b. $\quad P_{1} P_{2}=\sqrt{r_{1}^{2}-r_{2}{ }^{2}-2 r_{1} r_{2} \cos \left(\theta_{2}-\theta_{1}\right)}$
c. $P_{1} P_{2}=\sqrt{r_{1}{ }^{2}+r_{2}{ }^{2}-2 r_{1} r_{2} \cos \left(\theta_{2}+\theta_{1}\right)}$
d. None of these

Part B Instructions: Answer the question below.
5. Use distance formula to find the distance between $\left(3, \frac{\pi}{2}\right)$ and $\left(8, \frac{4 \pi}{3}\right)$.

$$
\begin{aligned}
& \text { Let } P_{1}\left(r_{1}, \theta_{1}\right)=P_{1}\left(3, \frac{\pi}{2}\right) \text { and } P_{2}\left(8, \frac{4 \pi}{3}\right) \text {, then: } \\
& P_{1} P_{2}=\sqrt{3^{2}+8^{2}-2(3)(8) \cos \left(\frac{4 \pi}{3}-\frac{\pi}{2}\right)} \\
& P_{1} P_{2}=\sqrt{9+64-48 \cos \left(\frac{5 \pi}{6}\right)} \\
& \quad \rightarrow P_{1} P_{2}=10.70
\end{aligned}
$$

