\qquad
\qquad Date: \qquad

Polar Coordinates Bell Work

Find two different pair of polar coordinates for each point given such that $-\mathbf{3 6 0}^{\circ} \leq \boldsymbol{\theta} \leq \mathbf{3 6 0}$ or $-2 \pi \leq \theta \leq 2 \pi$.

1. $\left(2,150^{\circ}\right)$
2. $\left(-3, \frac{2 \pi}{3}\right)$
\qquad Period: \qquad Date: \qquad

Polar Coordinates Bell Work

Answers

Find two different pair of polar coordinates for each point given such that $-\mathbf{3 6 0}^{\circ} \leq \boldsymbol{\theta} \leq \mathbf{3 6 0}^{\circ}$ or $-2 \pi \leq \theta \leq 2 \pi$.

1. $\left(2,150^{\circ}\right)$

Let $P(r, \theta)=P\left(2,150^{\circ}\right)$. We add/subtract multiples of 180° to make the angle between -360° and 360°.

$$
150^{\circ}-(2) 180^{\circ}=150^{\circ}-360^{\circ}=-210^{\circ}
$$

Now, -210° is between -360° and 360°, also since $k=2$ is even, so $r=2$ is kept as such.

$$
\rightarrow P\left(2,150^{\circ}\right)=P\left(2,-210^{\circ}\right)
$$

$$
150^{\circ}+(1) 180^{\circ}=150^{\circ}+180^{\circ}=330^{\circ}
$$

Now, 330° is between -360° and 360°, also since $k=1$ is odd, so $r=2$ becomes $r=-2$.

$$
\rightarrow P\left(2,150^{\circ}\right)=P\left(-2,330^{\circ}\right)
$$

2. $\left(-3, \frac{2 \pi}{3}\right)$

Let $P(r, \theta)=P\left(-3, \frac{2 \pi}{3}\right)$. We add/subtract multiples of π to make the angle between -2π and 2π.

$$
\frac{2 \pi}{3}-(1) \pi=\frac{2 \pi-3 \pi}{3}=-\frac{\pi}{3}
$$

Now, $-\frac{\pi}{3}$ is between -2π and 2π, also since $k=1$ is odd, so $r=-3$ becomes $r=3$.

$$
\rightarrow P\left(-3, \frac{2 \pi}{3}\right)=P\left(3,-\frac{\pi}{3}\right)
$$

$$
\frac{2 \pi}{3}+(1) \pi=\frac{2 \pi+3 \pi}{3}=\frac{5 \pi}{3}
$$

Now, $\frac{5 \pi}{3}$ is between -2π and 2π, also since $k=1$ is odd, so $r=-3$ becomes $r=3$.

$$
\rightarrow P\left(-3, \frac{2 \pi}{3}\right)=P\left(3, \frac{5 \pi}{3}\right)
$$

