Polar Coordinates Bell Work

Find two different pair of polar coordinates for each point given such that $-360^\circ \leq \theta \leq 360^\circ$ or $-2\pi \leq \theta \leq 2\pi$.

1. (2, 150°)

 $2.\left(-3,\frac{2\pi}{3}\right)$

Polar Coordinates Bell Work

Answers

Find two different pair of polar coordinates for each point given such that $-360^{\circ} \le \theta \le 360^{\circ}$ or $-2\pi \le \theta \le 2\pi$.

1. (2, 150°)

Let $P(r, \theta) = P(2, 150^{\circ})$. We add/subtract multiples of 180° to make the angle between -360° and 360° .

 $150^{\circ} - (2)180^{\circ} = 150^{\circ} - 360^{\circ} = -210^{\circ}$

Now, -210° is between -360° and 360° , also since k = 2 is even, so r = 2 is kept as such.

 $\rightarrow P(2,150^\circ) = P(2,-210^\circ)$

 $150^{\circ} + (1)180^{\circ} = 150^{\circ} + 180^{\circ} = 330^{\circ}$

Now, 330° is between -360° and 360° , also since k = 1 is odd, so r = 2 becomes r = -2.

 $\rightarrow P(2,150^\circ) = P(-2,330^\circ)$

 $\mathbf{2.}\left(-\mathbf{3},\frac{2\pi}{3}\right)$

Let $P(r, \theta) = P\left(-3, \frac{2\pi}{3}\right)$. We add/subtract multiples of π to make the angle between -2π and 2π .

$$\frac{2\pi}{3} - (1)\pi = \frac{2\pi - 3\pi}{3} = -\frac{\pi}{3}$$

Now, $-\frac{\pi}{3}$ is between -2π and 2π , also since k = 1 is odd, so r = -3 becomes r = 3.

$$\rightarrow P\left(-3,\frac{2\pi}{3}\right) = P\left(3,-\frac{\pi}{3}\right)$$

 $\frac{2\pi}{3} + (1)\pi = \frac{2\pi + 3\pi}{3} = \frac{5\pi}{3}$

Now, $\frac{5\pi}{3}$ is between -2π and 2π , also since k = 1 is odd, so r = -3 becomes r = 3.

 $\rightarrow \frac{P\left(-3,\frac{2\pi}{3}\right)}{P\left(3,\frac{5\pi}{3}\right)}$

Copyright ©PreCalculusCoach.com

f PreCalculusCoach.com