\qquad Period: \qquad Date: \qquad

Polar Coordinates Assignment

Find a different pair of polar coordinates for each given point such that $\mathbf{0} \leq \boldsymbol{\theta} \leq \mathbf{1 8 0}$ or $\mathbf{0} \leq \boldsymbol{\theta} \leq \boldsymbol{\pi}$.

1. $\left(-2, \frac{5 \pi}{2}\right)$
2. $\left(-5,-1460^{\circ}\right)$
3. $\left(-3,-\frac{21 \pi}{8}\right)$
\qquad
\qquad Date: \qquad

Polar Coordinates Assignment

Use distance formula to find the distance between each pair of points.

1. $\left(3, \frac{\pi}{2}\right)$ and $\left(8, \frac{4 \pi}{3}\right)$
2. $\left(4,-315^{\circ}\right)$ and $\left(1,60^{\circ}\right)$
3. $\left(-5,135^{\circ}\right)$ and $\left(-1,240^{\circ}\right)$
\qquad Period: \qquad Date: \qquad

Polar Coordinates Assignment

Answers

Find a different pair of polar coordinates for each given point such that $\mathbf{0} \leq \boldsymbol{\theta} \leq \mathbf{1 8 0}{ }^{\circ}$ or $\mathbf{0} \leq \boldsymbol{\theta} \leq \boldsymbol{\pi}$.

1. $\left(-2, \frac{5 \pi}{2}\right)$

Let $P(r, \theta)=P\left(-2, \frac{5 \pi}{2}\right)$. We subtract multiples of π to make the angle between 0 and π.

$$
\frac{5 \pi}{2}-(2) \pi=\frac{5 \pi-4 \pi}{2}=\frac{\pi}{2}
$$

Now, $\frac{\pi}{2}$ is between 0 and π, also since $k=2$ is even, so $r=5$ is kept as such.

$$
\rightarrow P\left(-2, \frac{5 \pi}{2}\right)=P\left(-2, \frac{\pi}{2}\right)
$$

3. $\left(-5,-1460^{\circ}\right)$

Let $P(r, \theta)=P\left(-5,-1460^{\circ}\right)$. We add multiples of 180° to make the angle between 0 and 180°. $-1460^{\circ}+(9) 180^{\circ}=-1460^{\circ}+1620^{\circ}=160^{\circ}$

Now, 160° is between 0 and 180°,
also since $k=9$ is odd, so $r=-5$ becomes $r=5$

$$
\rightarrow P\left(-5,-1460^{\circ}\right)=P\left(5,160^{\circ}\right)
$$

2. $\left(1.5,-920^{\circ}\right)$

Let $P(r, \theta)=P\left(1.5,-920^{\circ}\right)$. We add multiples of 180° to make the angle between 0 and 180°.

$$
-920^{\circ}+(6) 180^{\circ}=-920^{\circ}+1080^{\circ}=160^{\circ}
$$

Now, 160° is between 0 and 180°, also since $k=6$ is even, so $r=1.5$ is kept as such.

$$
\rightarrow P\left(1.5,-920^{\circ}\right)=P\left(1.5,160^{\circ}\right)
$$

4. $\left(-3,-\frac{21 \pi}{8}\right)$

Let $P(r, \theta)=P\left(-3,-\frac{21 \pi}{8}\right)$. We subtract multiples of π to make the angle between 0 and π.

$$
-\frac{21 \pi}{8}+(3) \pi=\frac{-21 \pi+24 \pi}{8}=\frac{3 \pi}{8}
$$

Now, $\frac{3 \pi}{8}$ is between 0 and π, also since $k=3$ is
odd, so $r=-3$ becomes $r=3$.

$$
\rightarrow P\left(-3,-\frac{21 \pi}{8}\right)=P\left(3, \frac{3 \pi}{8}\right)
$$

\qquad
\qquad
\qquad

Polar Coordinates Assignment

Use distance formula to find the distance between each pair of points.

1. $\left(3, \frac{\pi}{2}\right)$ and $\left(8, \frac{4 \pi}{3}\right)$

Let $P_{1}\left(r_{1}, \theta_{1}\right)=P_{1}\left(3, \frac{\pi}{2}\right)$ and $P_{2}\left(8, \frac{4 \pi}{3}\right)$, then:
$P_{1} P_{2}=\sqrt{3^{2}+8^{2}-2(3)(8) \cos \left(\frac{4 \pi}{3}-\frac{\pi}{2}\right)}$

$$
P_{1} P_{2}=\sqrt{9+64-48 \cos \left(\frac{5 \pi}{6}\right)}
$$

$$
\rightarrow P_{1} P_{2}=10.70
$$

2. $\left(4,-315^{\circ}\right)$ and $\left(1,60^{\circ}\right)$

Let $P_{1}\left(r_{1}, \theta_{1}\right)=P_{1}\left(4,-315^{\circ}\right)$ and $P_{2}\left(1,60^{\circ}\right)$, then:
$P_{1} P_{2}=\sqrt{4^{2}+1^{2}-2(4)(1) \cos \left(60^{\circ}-\left(-315^{\circ}\right)\right)}$
$P_{1} P_{2}=\sqrt{16+1-8 \cos \left(375^{\circ}\right)}$
$\rightarrow P_{1} P_{2}=3.1$
3. $\left(-5,135^{\circ}\right)$ and $\left(-1,240^{\circ}\right)$

Let $P_{1}\left(r_{1}, \theta_{1}\right)=P_{1}\left(-5,135^{\circ}\right)$ and $P_{2}\left(-1,240^{\circ}\right)$, then:

$$
P_{1} P_{2}=\sqrt{(-5)^{2}+(-1)^{2}-2(-5)(-1) \cos \left(240^{\circ}-135^{\circ}\right)}
$$

$$
P_{1} P_{2}=\sqrt{25+1-10 \cos \left(105^{\circ}\right)}
$$

$$
\rightarrow P_{1} P_{2}=5.35
$$

