for PreCalculusCoach.com Ellipses and Circles

Unit 7 Lesson 2

ELLIPSES AND CIRCLES

Students will be able to:

Understand the conics ellipse and circle and their associated properties.

Key Vocabulary:

- Ellipse
- Major Axis, Minor Axis
- Circle
- Radius, Diameter

ELLIPSES AND CIRCLES

An Ellipse is a curve formed by the intersection of a plane and a double cone such that the plane cuts the cone at an angle.

Ellipse

ELLIPSES AND CIRCLES

Equations Representing Ellipses

The equations representing the ellipses are given below:

- Ellipse with Horizontal Axis $(\boldsymbol{a}>\boldsymbol{b})$

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

- Ellipse with Vertical Axis $(\boldsymbol{a}>\boldsymbol{b})$

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

ELLIPSES AND CIRCLES

Foci of Ellipse

Foci are two fixed points such that the sum of distances between any point on Ellipse and these two points is a constant.

For vertical ellipse, foci are given as:

$$
(h, k \pm c)
$$

For horizontal ellipse, foci are given as:

$$
(\boldsymbol{h} \pm \boldsymbol{c}, \boldsymbol{k})
$$

where,

$$
c^{2}=a^{2}-b^{2}
$$

ELLIPSES AND CIRCLES

Major Axis and Minor Axis

Vertices are the points on the ellipse where the line passing through the foci and called Major Axis intersects the ellipse.

Minor Axis is the line perpendicular to major axis and intersects the ellipse at points called Co-vertices.

Ellipse	Vertices	Co-Vertices
Vertical	$(\boldsymbol{h}, \boldsymbol{k} \pm \boldsymbol{a})$	$(\boldsymbol{h} \pm \boldsymbol{b}, \boldsymbol{k})$
Horizontal	$(\boldsymbol{h} \pm \boldsymbol{a}, \boldsymbol{k})$	$(\boldsymbol{h}, \boldsymbol{k} \pm \boldsymbol{b})$

ELLIPSES AND CIRCLE

Problem 1: Graph $4 x^{2}+25 y^{2}=100$. Identify the center, vertices, co-vertices and foci of the ellipse.

ELLIPSES AND CIRCLES

Problem 1: Graph $4 x^{2}+25 y^{2}=100$. Identify the center, vertices, co-vertices and foci of the ellipse.

Re-write the equation in standard form:
$4 x^{2}+\mathbf{2 5} y^{2}=100 \rightarrow \frac{x^{2}}{25}+\frac{y^{2}}{4}=1$
Here, $a=5 ; b=2 ; h=0 ; k=0$
Ellipse is horizontal, since \boldsymbol{a} is with \boldsymbol{x}-term.
$c=\sqrt{a^{2}-b^{2}}=\sqrt{25-4}=\sqrt{21}$
Center: $(\boldsymbol{h}, \boldsymbol{k})=(\mathbf{0}, \mathbf{0})$
Vertices: $(\boldsymbol{h} \pm \boldsymbol{a}, \boldsymbol{k})=(\pm 5,0)$
Co-vertices: $(h, k \pm b)=(0, \pm 2)$
Foci: $(h \pm c, k)=(\pm \sqrt{21}, \mathbf{0})$

ELLIPSES AND CIRCLES

A Circle is a curve formed by the intersection of a plane and a double cone such that the plane is perpendicular to the axis of cone.

Circle

ELLIPSES AND CIRCLES

The equation of a circle is given as:

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

- ($\boldsymbol{h}, \boldsymbol{k}$) is the center of the circle and is the point that is equidistant from all the points on the circle.
- \boldsymbol{r} is the radius of the circle and is the distance between the center and any point on the circle.

$$
x^{2}+y^{2}=4
$$

ELLIPSES AND CIRCLES

Problem 2: Graph $(x-2)^{2}+(y+1)^{2}=16$. Identify the center and radius of the circle.

ELLIPSES AND CIRCLES

Problem 2: $\operatorname{Graph}(x-2)^{2}+(y+1)^{2}=16$. Identify the center and radius of the circle.

Comparing with the standard equation of circle:

$$
(x-h)^{2}+(y-k)^{2}=r^{2} \leftrightarrow(x-2)^{2}+(y+1)^{2}=16
$$

$$
\rightarrow h=2 ; k=-1 ; r=4
$$

Center $(h, k)=(2,-1)$
Radius: $r=4$

$$
(x-2)^{2}+(y+1)^{2}=16
$$

