\qquad
\qquad Date: \qquad

Ellipses and Circles Assignment

Identify the center, vertices, co-vertices and foci of each ellipse. Also graph the ellipse.

1. $\frac{(x+1)^{2}}{9}+\frac{y^{2}}{49}=1$
2. $\frac{(x+4)^{2}}{9}+\frac{(y+3)^{2}}{4}=1$
\qquad Date: \qquad

Ellipses and Circles Assignment

Write an equation for each ellipse, given its characteristics.

1. vertices $(-7,-3),(13,-3)$; foci $(-5,-3)$, $(11,-3)$.
2. vertices $(4,3),(4,-9)$; length of minor axis is 8 .
\qquad Period: \qquad Date: \qquad

Ellipses and Circles Assignment

Write an equation for a circle that satisfies the conditions given. Also graph the circle.

1. center (3,0), radius 2
2. Center (-1, 6), Diameter 6.
\qquad Date: \qquad

Ellipses and Circles Assignment

Answers

Identify the center, vertices, co-vertices and foci of each ellipse. Also graph the ellipse.

1. $\frac{(x+1)^{2}}{9}+\frac{y^{2}}{49}=1$

Comparing with general equation of ellipse,
$\rightarrow h=-1 \quad ; \quad k=0 ; a=7 ; b=3$

Ellipse is vertical, since a is with $y-t e r m$.

$$
c=\sqrt{a^{2}-b^{2}}=\sqrt{7^{2}-3^{2}}=\sqrt{40}
$$

Center $(h, k)=(-1,0)$
$\operatorname{Vertices}(h, k \pm a)=(-1,7)$ and $(-1,-7)$

Co-vertices $(h \pm b, k)=(2,0)$ and $(-4,0)$

Foci $(h, k \pm c)=(-1, \sqrt{40})$ and $(-1,-\sqrt{40})$

Graph:

2. $\frac{(x+4)^{2}}{9}+\frac{(y+3)^{2}}{4}=1$

Comparing with general equation of ellipse,
$\rightarrow h=-4 ; k=-3 ; a=3 ; \quad b=2$

Ellipse is horizontal, since a is with x-term.

$$
c=\sqrt{a^{2}-b^{2}}=\sqrt{3^{2}-2^{2}}=\sqrt{5}
$$

Center $(h, k)=(-4,-3)$

Vertices $(h \pm a, k)=(-1,-3)$ and $(-7,-3)$

Co-vertices $(h, k \pm b)=(-4,-1)$ and $(-4,-5)$

Foci $(h \pm c, k)=(-4 \pm \sqrt{5},-3)$

Graph:

\qquad
\qquad Date: \qquad

Ellipses and Circles Assignment

Write an equation for each ellipse, given its characteristics.

1. vertices $(-7,-3),(13,-3)$; foci $(-5,-3)$,
2. vertices $(4,3),(4,-9)$; length of minor axis is 8 . (11,-3).

Because the y-coordinates of the vertices are the same, the major axis is horizontal.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Center is the midpoint of the segment between the vertices. $\left(\frac{13-7}{2}, \frac{-3-3}{2}\right)=(3,-3)$

Here $h=3, k=-3$
Because the x - coordinates of the vertices are the same, the major axis is vertical.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=\mathbf{1}
$$

Center is the midpoint of the segment between the vertices. $\left(\frac{4+4}{2}, \frac{-9+3}{2}\right)=(4,-3)$

Here $h=4, k=-3$

The distance between the vertices is equal to $2 a$. The distance between the vertices is equal to $2 a$.
$2 a=20 \rightarrow a=10 \rightarrow a^{2}=100$

$$
2 a=12 \rightarrow a=6 \rightarrow a^{2}=36
$$

The length of minor axis is $2 b=8 \rightarrow b=4$.

$$
\rightarrow \quad b^{2}=16
$$

The equation of ellipse is,

The equation of ellipse is,

$$
\frac{(x-4)^{2}}{16}+\frac{(y+3)^{2}}{36}=1
$$

$$
\frac{(x-3)^{2}}{100}+\frac{(y+3)^{2}}{36}=1
$$

\qquad
\qquad Date: \qquad

Ellipses and Circles Assignment

Write an equation for a circle that satisfies the conditions given. Also graph the circle.

1. center (3, 0), radius 2

The equation of circle is,

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Here $h=3, k=0, r=2$
$\rightarrow \quad(x-3)^{2}+y^{2}=4$

Graph:

2. Center (-1, 6), Diameter 6.

The equation of circle is,

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Here $h=-1, k=6 ; r=\frac{d}{2}=\frac{6}{2}=3$
$\rightarrow(x+1)^{2}+(y-6)^{2}=9$

Graph:

