\qquad Date: \qquad

Matrix Multiplication, Inverses, and Determinants Guided Notes

Matrix Multiplication

If \mathbf{A} and \mathbf{B} are two matrices, then their multiplication is possible if the number of columns in matrix \mathbf{A} is equal to the number of rows in the matrix \mathbf{B}. If \mathbf{A} has dimensions $m \times r$ and \mathbf{B} has dimensions $r \times n$, then their product $\mathbf{A B}$ has dimensions $m \times n$.

If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $B=\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]$, then matrix multiplication $A B$ is:

$$
A B=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \cdot\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]
$$

Problem 1: Find $A B$ if $A=\left[\begin{array}{ll}4 & 2 \\ 1 & 3\end{array}\right]$ and $B=\left[\begin{array}{ccc}-1 & 2 & 4 \\ 2 & 1 & -1\end{array}\right]$.

Determinant of a Matrix

The determinant of a matrix is the difference of the product of secondary diagonal entries from the main diagonal entries.

If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $\operatorname{det}(\boldsymbol{A})=\boldsymbol{a d} \boldsymbol{d} \boldsymbol{c} \boldsymbol{b}$

Identity Matrix

The identity matrix is a $n \times n$ matrix whose main diagonal has all entries equal to 1 , and all other elements are Os.

$$
I_{2 \times 2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

\qquad Date: \qquad

Matrix Multiplication, Inverses, and Determinants Guided Notes

Inverse of a Matrix
The inverse of a matrix \boldsymbol{A} is a matrix \boldsymbol{B}, such that:

$$
A B=B A=I
$$

Where I is the identity matrix.

Mathematically:

If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $\boldsymbol{A}^{-\mathbf{1}}=\frac{\mathbf{1}}{\operatorname{det}(A)}\left[\begin{array}{cc}\boldsymbol{d} & -\boldsymbol{b} \\ -\boldsymbol{c} & \boldsymbol{a}\end{array}\right]$
where $\operatorname{det}(A)=a d-c b$

Problem 2: Find the inverse of matrix $A=\left[\begin{array}{ll}2 & -2 \\ 3 & -6\end{array}\right]$, if it exists.

