\qquad Period: \qquad Date: \qquad

Matrix Multiplication, Inverses, and Determinants Exit Quiz

Part A Instructions: Choose the option that completes the sentence or answers the question.

1. If the dimensions of a matrix A are $r \times k$, and the dimensions of matrix B are $k \times s$, the dimensions of $A B$ will be:
a. $r \times k$
b. $r \times s$
c. $k \times k$
d. None of these
2. If the determinant of a matrix is zero, then the matrix is:
a. Identity
b. Invertible
c. Non-Invertible
d. None of these
3. A matrix in which all the entries on the main diagonal equal 1 and all the other entries are zero, is known as:
a. Row matrix
b. Square matrix
c. Identity
d. None of these
4. The determinant of the matrix $A=\left[\begin{array}{cc}4 & -1 \\ 2 & 5\end{array}\right]$ is:
a. 18
b. 22
c. 12
d. None of these

Part B Instructions: Answer the question below.
5. Find the inverse of matrix $A=\left[\begin{array}{cc}11 & 5 \\ 2 & 1\end{array}\right]$ if it exists.
\qquad Period: \qquad Date: \qquad

Matrix Multiplication, Inverses, and Determinants Exit Quiz

Answers

Part A Instructions: Choose the option that completes the sentence or answers the question.

1. If the dimensions of a matrix A are $r \times k$, and the dimensions of matrix B are $k \times s$, the dimensions of $A B$ will be:
a. $r \times k$
b. $r \times s$
c. $k \times k$
d. None of these
2. If the determinant of a matrix is zero, then the matrix is:
a. Identity
b. Invertible
c. Non-Invertible
d. None of these
3. A matrix in which all the entries on the main diagonal equal 1 and all the other entries are zero, is known as:
a. Row matrix
b. Square matrix
c. Identity
d. None of these
4. The determinant of the matrix $A=\left[\begin{array}{cc}4 & -1 \\ 2 & 5\end{array}\right]$ is:
a. 18
b. 22
c. 12
d. None of these

Part B Instructions: Answer the question below.
5. Find the inverse of matrix $A=\left[\begin{array}{cc}11 & 5 \\ 2 & 1\end{array}\right]$ if it exists.

$$
\operatorname{det}(A)=11(1)-2(5)=11-10=1
$$

Since $\operatorname{det}(A) \neq 0, \mathrm{~A}$ is invertible.

$$
\begin{aligned}
& A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}
1 & -5 \\
-2 & 11
\end{array}\right] \\
& A^{-1}=\frac{1}{1}\left[\begin{array}{cc}
1 & -5 \\
-2 & 11
\end{array}\right] \\
& \rightarrow A^{-1}=\left[\begin{array}{cc}
1 & -5 \\
-2 & 11
\end{array}\right]
\end{aligned}
$$

