\qquad Period: \qquad Date: \qquad

Right Angle Trigonometry Guided Notes

Right Triangle Trigonometry

Right angle trigonometry is the trigonometry of a right-angled triangle.
A right-angled triangle is a triangle in which one angle is 90 degrees.

Properties of a Right Angled Triangle

- A hypotenuse is the line segment opposite to the right-angle.
- An opposite is the line segment opposite to the angle Θ.
- An adjacent is the line segment next to the angle θ.

Trigonometric Ratios

There are total 6 trigonometric ratios for a right angled triangle.

1. Sine

$$
\sin (\theta)=\frac{\text { opposite }}{\text { hypotenuse }}
$$

2. Cosine

$$
\cos (\theta)=\frac{\text { adjacent }}{\text { hypotenuse }}
$$

\qquad
\qquad Date: \qquad

Right Angle Trigonometry Guided Notes

3. Tangent

$$
\tan (\theta)=\frac{\text { opposite }}{\text { adjacent }}
$$

4. Cosecant

$$
\operatorname{cosec}(\theta)=\frac{\text { hypotenuse }}{\text { opposite }}=\frac{1}{\sin (\theta)}
$$

5. Secant

$$
\sec (\theta)=\frac{\text { hypotenuse }}{\text { adjacent }}=\frac{1}{\cos (\theta)}
$$

6. Cotangent

$$
\cot (\theta)=\frac{\text { adjacent }}{\text { opposite }}=\frac{1}{\cot (\theta)}
$$

Problem 1: Write the trigonometric ratios for the angle C in the triangle shown.

\qquad
\qquad Date: \qquad

Right Angle Trigonometry Guided Notes

Problem 2: Find the value of x. Round to the nearest tenth.

Pythagorean Theorem

In a right-triangle, the sum of the squares of the lengths of adjacent and opposite is equal to the square of the length of hypotenuse.

$$
c^{2}=a^{2}+b^{2}
$$

Where,
c = Hypotenuse
a $=$ Opposite

b=Adjacent

Problem 3: Find the unknown length x in the right triangle shown.

