EXPONENTIAL FUNCTIONS

Students will be able to:
 Understand exponential functions, their properties and graphs

Key Vocabulary:

- Exponential Function
- Graphing Exponential Functions

EXPONENTIAL FUNCTIONS

Exponential Function

An exponential function is a function of the form:

$$
f(x)=a^{x}
$$

Where,
$\boldsymbol{a}=$ constant called the base
$\boldsymbol{x}=$ variable

EXPONENTIAL FUNCTIONS

Domain and Range

An exponential function $f(x)$ is normally defined for all the values of x i.e. domain $=(-\infty,+\infty)$ and the range is either $(0,+\infty)$ or $(-\infty, 0)$ depending on the sign with the base.

Asymptote and Intercept

Asymptote of the exponent function is a horizontal line that touches the exponential function. Intercept is the value of the exponential function where its graph meets the y-axis.

Important!
$a^{\infty}=\infty$
$a^{-\infty}=0$

EXPONENTIAL FUNCTIONS

Problem 1: Graph the function $f(x)=2^{-x}$ and mention its domain, range, asymptote and intercept.

EXPONENTIAL FUNCTIONS

Problem 1: Graph the function $f(x)=2^{-x}$ and mention its domain, range, asymptote and intercept.

Domain: $(-\infty, \infty)$
Range: $(0, \infty)$
Asymptote: $y=0$

Intercept: $f(0)=2^{-0}=1 \rightarrow(0,1)$

EXPONENTIAL FUNCTIONS

Special Exponential Function

A special case of exponential functions is when the base is a constant $e \approx 2.7183$:

$$
f(x)=e^{x}
$$

Where,
$\boldsymbol{e} \approx 2.7183$
$\boldsymbol{x}=$ variable

EXPONENTIAL FUNCTIONS

Graphing Exponential Functions

To graph exponential functions having shifts or positive or negative signs with base or the variable, we have the following cases:

1. $f(x)=a^{x+k}$

- Graph of $\boldsymbol{a}^{\boldsymbol{x}}$ shifts left if \boldsymbol{k} is positive
- Graph of $a^{\boldsymbol{x}}$ shifts right if \boldsymbol{k} is negative

EXPONENTIAL FUNCTIONS

Graphing Exponential Functions

2. $f(x)=a^{x}+h$

- Graph of $\boldsymbol{a}^{\boldsymbol{x}}$ shifts up if \boldsymbol{h} is positive
- Graph of $\boldsymbol{a}^{\boldsymbol{x}}$ shifts down if \boldsymbol{h} is negative

3. $f(x)=a^{c x}$

- Graph of a^{x} compresses horizontally by a factor c

EXPONENTIAL FUNCTIONS

Graphing Exponential Functions

4. $f(x)=a^{-x}$

- Graph of a^{x} reflects around y-axis

5. $f(x)=-a^{x}$

- Graph of a^{x} reflects around x-axis

6. $f(x)=b a^{x}$

- Graph of $\boldsymbol{a}^{\boldsymbol{x}}$ expands by a factor b

EXPONENTIAL FUNCTIONS

Problem 2: Graph the functions $f(x)=e^{x}$ and $g(x)=e^{-x+1}$.

EXPONENTIAL FUNCTIONS

Problem 2: Graph the functions $f(x)=e^{x}$ and $g(x)=e^{-x+1}$.

The function $g(x)$ can be graphed using $f(x)$.
e^{-x+1} means the graph of e^{x} is reflected around x-axis and then shifted left by 1 unit.

