Students will be able to:

Understand exponential functions, their properties and graphs

Key Vocabulary:

- Exponential Function
- Graphing Exponential Functions

Exponential Function

An exponential function is a function of the form:

$$f(x)=a^x$$

Where,

a = constant called the base

$$x = \text{variable}$$

Domain and Range

An exponential function f(x) is normally defined for all the values of x i.e. domain = $(-\infty, +\infty)$ and the range is either $(0, +\infty)$ or $(-\infty, 0)$ depending on the sign with the base.

Asymptote and Intercept

Asymptote of the exponent function is a horizontal line that touches the exponential function. Intercept is the value of the exponential function where its graph meets the y-axis.

Problem 1: Graph the function $f(x) = 2^{-x}$ and mention its domain, range, asymptote and intercept.

Problem 1: Graph the function $f(x) = 2^{-x}$ and mention its domain, range, asymptote and intercept.

Domain:
$$(-\infty, \infty)$$

Asymptote:
$$y = 0$$

Intercept:
$$f(0) = 2^{-0} = 1 \rightarrow (0, 1)$$

Special Exponential Function

A special case of exponential functions is when the base is a constant $e \approx 2.7183$:

$$f(x)=e^x$$

Where,

$$e \approx 2.7183$$

x = variable

Graphing Exponential Functions

To graph exponential functions having shifts or positive or negative signs with base or the variable, we have the following cases:

$$\mathbf{1.}\,f(x)=a^{x+k}$$

- Graph of a^x shifts left if k is positive
- Graph of a^x shifts right if k is negative

Graphing Exponential Functions

$$2. f(x) = a^x + h$$

- Graph of a^x shifts up if h is positive
- Graph of a^x shifts down if h is negative

$$3. f(x) = a^{cx}$$

• Graph of a^x compresses horizontally by a factor c

Graphing Exponential Functions

$$4. f(x) = a^{-x}$$

• Graph of a^x reflects around y-axis

$$5. f(x) = -a^x$$

• Graph of a^x reflects around x-axis

$$6. f(x) = ba^x$$

• Graph of a^x expands by a factor b

Problem 2: Graph the functions $f(x) = e^x$ and $g(x) = e^{-x+1}$.

Problem 2: Graph the functions $f(x) = e^x$ and $g(x) = e^{-x+1}$.

The function g(x) can be graphed using f(x).

 e^{-x+1} means the graph of e^x is reflected around x-axis and then shifted left by 1 unit.

