f(w) PreCalculusCoach.com Rational Functions

Unit 2 Lesson 5

RATIONAL FUNCTIONS

Students will be able to:
 Understand rational functions and properties associated with them

Key Vocabulary:

- Rational Function
- Domain, Range
- Vertical Asymptotes, x-intercepts
- Interpreting Graph of Rational Function

RATIONAL FUNCTIONS

Rational Function

A rational function is a fraction of polynomials $p(x)$ and $q(x)$. Mathematically:

$$
f=\frac{p(x)}{q(x)}
$$

Where $p(x)$ is the numerator and $q(x)$ is the denominator.

Example:

- $f=\frac{1}{x-1}$
- $f=\frac{y(y-2)}{(y-3)}$

RATIONAL FUNCTIONS

Domain of Rational Function

Domain of a rational function is the set of all real numbers except the roots of the denominator polynomial $q(x)$.

Range of Rational Function

Range of a rational function is the set of all real numbers except those values of input(domain) that give the output as ∞ i.e. the output of the numbers excluded from domain.

RATIONAL FUNCTIONS

Vertical Asymptotes

Vertical asymptotes are the vertical lines passing through the roots of denominator polynomial $q(x)$ and touching the graph of the rational function. The graph of rational function rises up or slides down the sides of the vertical asymptotes.

x-intercepts

These are the points where the graph of a rational function meets the x-axis and are the roots of the numerator polynomial $f(x)$ in the rational function.

RATIONAL FUNCTIONS

Problem 1: Find the domain, vertical asymptotes and x-intercepts of
the rational function $\frac{4(x-2)\left(x^{2}-1\right)}{3(x-3)(x+4)}$.

RATIONAL FUNCTIONS

Problem 1: Find the domain, vertical asymptotes and x-intercepts of the rational function $\frac{4(x-2)\left(x^{2}-1\right)}{3(x-3)(x+4)}$.

Denominator has roots $x=3, x=-4$.
Numerator has roots $\boldsymbol{x}=\mathbf{2}, \boldsymbol{x}=\mathbf{1}, \boldsymbol{x}=-\mathbf{1}$.

Domain: $R-\{3,-4\}$

Vertical Asymptotes: $x=3, x=-4$
x-intercepts: $x=2, x=1, x=-1$

RATIONAL FUNCTIONS

Interpreting Graph of Rational Function

Given the graph of a rational function, we can identify its vertical asymptotes and x-intercepts.

From the graph we can see that the function has two vertical asymptotes at $x=-3$ and $x=-1$ (since f is ∞).

Also, the graph touches x-axis at $x=-4$ and $x=-2$, which are the x-intercepts.

We can also say that numerator $p(x)$ has factors $(x+4)(x+2)$ and denominator $q(x)$ has factors $(x+3)(x+2)$.

RATIONAL FUNCTIONS

Problem 2: Solve the equation $y+\frac{6}{y}=5$.

RATIONAL FUNCTIONS

Problem 2: Solve the equation $y+\frac{6}{y}=5$.

$$
\begin{gathered}
y\left(y+\frac{6}{y}\right)=y(5) \rightarrow y^{2}+6=5 y \\
y^{2}-5 y+6=0 \\
y^{2}-3 y-2 y+6=0 \\
(y-3)(y-2)=0 \\
y=3, y=2
\end{gathered}
$$

