\qquad Period: \qquad Date: \qquad

Rational Functions Guided Notes

Rational Function

A rational function is a fraction of polynomials $p(x)$ and $q(x)$.
Mathematically:

$$
f=\frac{p(x)}{q(x)}
$$

Where $p(x)$ is the numerator and $q(x)$ is the denominator.

Example:

- $f=\frac{1}{x-1}$
- $f=\frac{y(y-2)}{(y-3)}$

Domain of Rational Function

Domain of a rational function is the set of all real numbers except the roots of the denominator polynomial $q(x)$.

Range of Rational Function

Range of a rational function is the set of all real numbers except those values of input(domain) that give the output as ∞ i.e. the output of the numbers excluded from domain.

Vertical Asymptotes

Vertical asymptotes are the vertical lines passing through the roots of denominator polynomial $q(x)$ and touching the graph of the rational function. The graph of rational function rises up or slides down the sides of the vertical asymptotes.

x-intercepts

These are the points where the graph of a rational function meets the x -axis and are the roots of the numerator polynomial $f(x)$ in the rational function.
\qquad Period: \qquad Date: \qquad

Rational Functions Guided Notes

Problem 1: Find the domain, vertical asymptotes and x-intercepts of the rational function $\frac{4(x-2)\left(x^{2}-1\right)}{3(x-3)(x+4)}$.

Interpreting Graph of Rational Function

Given the graph of a rational function, we can identify its vertical asymptotes and x-intercepts.

From the graph we can see that the function has two vertical asymptotes at $x=-3$ and $x=-1$ (since f is ∞).

Also, the graph touches x-axis at $x=-4$ and $x=-2$, which are the x-intercepts.

We can also say that numerator $p(x)$ has factors $(x+4)(x+2)$ and denominator $q(x)$ has factors $(x+3)(x+2)$.

Problem 2: Solve the equation $y+\frac{6}{y}=5$.

