f(0) PreCalculusCoach.com

Continuity, End Behavior, and Limits

Unit 1 Lesson 3

Continuity, End Behavior, and Limits

Students will be able to:

Interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.
Key Vocabulary:
Discontinuity, A limit,
End Behavior

The graph of a continuous function has no breaks, holes, or gaps. You can trace the graph of a continuous function without lifting your pencil.

One condition for a function $\boldsymbol{f}(\boldsymbol{x})$ to be continuous at $\boldsymbol{x}=\boldsymbol{c}$ is that the function must approach a unique function value as \boldsymbol{x}-values approach \boldsymbol{c} from the left and right sides.

The concept of approaching a value without necessarily ever reaching it is called a limit.

If the value of $\boldsymbol{f}(\boldsymbol{x})$ approaches a unique value \boldsymbol{L} as \boldsymbol{x} approaches \boldsymbol{c} from each side, then the limit of $\boldsymbol{f}(\boldsymbol{x})$ as \boldsymbol{x} approaches \boldsymbol{c} is \boldsymbol{L}.

$$
\lim _{x \rightarrow c} f(x)=L
$$

Continuity, End Behavior, and Limits
Functions that are not continuous are discontinuous. Graphs that are discontinuous can exhibit: - Infinite discontinuity

A function has an infinite discontinuity at $\boldsymbol{x}=\boldsymbol{c}$, if the function value increases or decreases indefinitely as \boldsymbol{x} approaches \boldsymbol{c} from the left and right.

Continuity, End Behavior, and Limits
Functions that are not continuous are discontinuous. Graphs that are discontinuous can exhibit:

Jump discontinuity

A function has a jump discontinuity at $\boldsymbol{x}=\boldsymbol{c}$ if the limits of the function as \boldsymbol{x} approaches \boldsymbol{c} from the left and right exist but have two distinct values.

Continuity, End Behavior, and Limits
Functions that are not continuous are discontinuous.
Graphs that are discontinuous can exhibit:

- Removable discontinuity, also called point discontinuity

Function has a removable discontinuity if the function is continuous everywhere except for a hole at $\boldsymbol{x}=\boldsymbol{c}$.

Continuity, End Behavior, and Limits

Continuity Test

A function $\boldsymbol{f}(\boldsymbol{x})$ is continuous at $\boldsymbol{x}=\boldsymbol{c}$, if it satisfies the following conditions:

1. $\boldsymbol{f}(\boldsymbol{x})$ is defined at $\mathbf{c} . \quad \boldsymbol{f}(\boldsymbol{c})$ exists.
2. $\boldsymbol{f}(\boldsymbol{x})$ approaches the same function value to the left and right of $\boldsymbol{c} . \quad \lim _{\boldsymbol{x} \rightarrow \boldsymbol{c}} f(\boldsymbol{x})$ exists
3. The function value that $\boldsymbol{f}(\boldsymbol{x})$ approaches from each

$$
\text { side of } \boldsymbol{c} \text { is } f(c) . \quad \lim _{x \rightarrow \boldsymbol{c}} f(x)=f(\underset{f}{\boldsymbol{c}})
$$

Continuity, End Behavior, and Limits
Sample Problem 1: Determine whether each function is continuous at the given x-values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.
a. $f(x)=3 x^{2}+x-7$ at $x=1$

Continuity, End Behavior, and Limits
Sample Problem 1: Determine whether each function is continuous at the given x-values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.
a. $f(x)=3 x^{2}+x-7$ at $x=1$

$$
\begin{aligned}
& f(1)=3 * 1^{2}+1-7=-3 \\
& f(1) \text { exists }
\end{aligned}
$$

Continuity, End Behavior, and Limits
Sample Problem 1: Determine whether each function is continuous at the given x-values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.
a. $f(x)=3 x^{2}+x-7$ at $x=1$

$$
x \rightarrow 1^{-} \quad y \rightarrow-3
$$

x	0.9	0.99	0.999
$f(x)$	-3.67	-3.0697	-3.006997

Continuity, End Behavior, and Limits
Sample Problem 1: Determine whether each function is continuous at the given x-values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.
a. $f(x)=3 x^{2}+x-7$ at $x=1$

$$
x \rightarrow 1^{+} y \rightarrow-3
$$

x	1.1	1.01	1.001
$f(x)$	-2.27	-2.9297	-2.992997

Continuity, End Behavior, and Limits
Sample Problem 1: Determine whether each function is continuous at the given x-values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.
a. $f(x)=3 x^{2}+x-7$ at $x=1$

$$
\begin{aligned}
& f(1)=-3 \text { and } y \rightarrow-3 \\
& \text { from both side of } x=1
\end{aligned}
$$

$$
\begin{gathered}
\lim _{x \rightarrow 1} 3 x^{2}+x-7=f(1) \\
f(x)=3 x^{2}+x-7 \\
\text { is continuous at } x=1
\end{gathered}
$$

Continuity, End Behavior, and Limits
Sample Problem 1: Determine whether each function is continuous at the given x-values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.
b. $f(x)=\frac{|2 x|}{x} \quad$ at $x=0$

Continuity, End Behavior, and Limits
Sample Problem 1: Determine whether each function is continuous at the given x-values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.
b. $f(x)=\frac{|2 x|}{x}$ at $x=0$

$$
f(0)=\frac{|2 * 0|}{0}=\frac{0}{0}
$$

The function is undefined at $\boldsymbol{x}=\mathbf{0}$

Continuity, End Behavior, and Limits
Sample Problem 1: Determine whether each function is continuous at the given x-values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.
b. $f(x)=\frac{|2 x|}{x}$ at $x=0$

$$
x \rightarrow 0^{-} \quad y \rightarrow-2
$$

x	-0.1	-0.01	-0.001
$f(x)$	-2	-2	-2

Continuity, End Behavior, and Limits
Sample Problem 1: Determine whether each function is continuous at the given x-values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.
b. $f(x)=\frac{|2 x|}{x} \quad$ at $x=0$

$$
x \rightarrow 0^{+} y \rightarrow 2
$$

x	0.1	0.01	0.001
$f(x)$	2	2	2

Continuity, End Behavior, and Limits
Sample Problem 1: Determine whether each function is continuous at the given x-values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.
b. $f(x)=\frac{|2 x|}{x}$ at $x=0$

$$
\begin{aligned}
& f(x)=\frac{|2 x|}{x} \\
& \text { has jump discontinuity at } x=0 \\
& \text { since } y \text { values are } 2 \text { and } \\
& -2 \text { on opposite sides of } x=0
\end{aligned}
$$

Continuity, End Behavior, and Limits
Sample Problem 1: Determine whether each function is continuous at the given x-values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.
c. $f(x)=\frac{x^{2}-4}{x+2} \quad$ at $\quad x=-2$

Continuity, End Behavior, and Limits
Sample Problem 1: Determine whether each function is continuous at the given x-values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.
c. $f(x)=\frac{x^{2}-4}{x+2} \quad$ at $x=-2$

$$
\begin{aligned}
& f(-2)=\frac{(-2)^{2}-4}{-2+2}=\frac{0}{0} \\
& f(x) \text { is undefined at } x=-2 \\
& f(x)=\frac{x^{2}-4}{x+2} \\
& \text { is discontinuous at } x=-2 \\
& \text { f(0)PreCalculusCoach.com }
\end{aligned}
$$

Continuity, End Behavior, and Limits
Sample Problem 1: Determine whether each function is continuous at the given x-values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.
c. $f(x)=\frac{x^{2}-4}{x+2} \quad$ at $\quad x=-2$

$$
x \rightarrow-2^{-} \quad y \rightarrow-4
$$

x	-2.1	-2.01	-2.001
$f(x)$	-4.1	-4.01	-4.001

Continuity, End Behavior, and Limits
Sample Problem 1: Determine whether each function is continuous at the given x-values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.
c. $f(x)=\frac{x^{2}-4}{x+2} \quad$ at $\quad x=-2$

$$
x \rightarrow-2^{+} y \rightarrow-4
$$

x	-1.9	-1.99	-1.999
$f(x)$	-3.9	-3.99	-3.999

Continuity, End Behavior, and Limits
Sample Problem 1: Determine whether each function is continuous at the given x-values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.
c. $f(x)=\frac{x^{2}-4}{x+2} \quad$ at $x=-2$

$$
f(x)=\frac{x^{2}-4}{x+2}
$$

has point discontinuity at $x=-2$ since y value is -4
on opposite sides of $x=-2$

Continuity, End Behavior, and Limits
Sample Problem 1: Determine whether each function is continuous at the given x-values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.
d. $f(x)=\frac{1}{3 x^{2}} \quad$ at $x=0$

Continuity, End Behavior, and Limits
Sample Problem 1: Determine whether each function is continuous at the given x-values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.
d. $f(x)=\frac{1}{3 x^{2}} \quad$ at $x=0$

$$
\begin{aligned}
& f(0)=\frac{1}{3 * 0^{2}}=\infty \\
& f(x) \text { is undefined at } x=0 \\
& f(x)=\frac{1}{3 x^{2}} \\
& \text { is discontinuous at } x=0 \\
& \text { PreCalculusCoach.com }
\end{aligned}
$$

Continuity, End Behavior, and Limits
Sample Problem 1: Determine whether each function is continuous at the given x-values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.
d. $f(x)=\frac{1}{3 x^{2}} \quad$ at $x=0$

$$
x \rightarrow \mathbf{0}^{-} \quad y \rightarrow+\infty
$$

x	-0.1	-0.01	-0.001
$f(x)$	33.33	$3,333.33$	$333,333.33$

Continuity, End Behavior, and Limits
Sample Problem 1: Determine whether each function is continuous at the given x-values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.
d. $f(x)=\frac{1}{3 x^{2}} \quad$ at $\quad x=0$

$$
\boldsymbol{x} \rightarrow \mathbf{0}^{+} \quad y \rightarrow+\infty
$$

x	0.1	0.01	0.001
$f(x)$	33.33	$3,333.33$	$333,333.33$

Continuity, End Behavior, and Limits
Sample Problem 1: Determine whether each function is continuous at the given x-values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.
d. $f(x)=\frac{1}{3 x^{2}} \quad$ at $x=0$

$$
\begin{aligned}
& f(x)=\frac{1}{3 x^{2}} \\
& \text { has infinity discontinuity } \\
& \text { at } x=0 \\
& \text { since } y \text { value is }+\infty \\
& \quad \text { when } x \rightarrow 0
\end{aligned}
$$

Continuity, End Behavior, and Limits

Intermediate Value Theorem

If $\boldsymbol{f}(\boldsymbol{x})$ is a continuous function and $\boldsymbol{a}<\boldsymbol{b}$ and there is a value \boldsymbol{n} such that \boldsymbol{n} is between $\boldsymbol{f}(\boldsymbol{a})$ and $\boldsymbol{f}(\boldsymbol{b})$, then there is a number \boldsymbol{c}, such that $\boldsymbol{a}<\boldsymbol{c}<\boldsymbol{b}$ and $\boldsymbol{f}(\boldsymbol{c})=\boldsymbol{n}$

Continuity, End Behavior, and Limits

The Location Principle

If $\boldsymbol{f}(\boldsymbol{x})$ is a continuous function and $\boldsymbol{f}(\boldsymbol{a})$ and $f(b)$ have opposite signs, then there exists at least one value \boldsymbol{c}, such that $\boldsymbol{a}<\boldsymbol{c}<\boldsymbol{b}$ and $\boldsymbol{f}(\boldsymbol{c})=0$.

That is, there is a zero between \boldsymbol{a} and \boldsymbol{b}.

Continuity, End Behavior, and Limits

Sample Problem 2: Determine between which consecutive integers the

 real zeros of function are located on the given interval.a. $f(x)=(x-3)^{2}-4$
[0,6]

Continuity, End Behavior, and Limits
Sample Problem 2: Determine between which consecutive integers the real zeros of function are located on the given interval.
a. $f(x)=(x-3)^{2}-4 \quad[0,6]$

x	0	1	2	3	4	5	6
y	5	0	-3	-4	-3	0	5

$\boldsymbol{f}(\mathbf{0})$ is positive and $\boldsymbol{f}(\mathbf{2})$ is negative, $f(x)$ change sign in $0 \leq x \leq 2$
$f(4)$ is negative and $f(6)$ is positive,
$f(x)$ change sign in $4 \leq x \leq 6$
$f(x)$ has zeros in intervals:

$$
0 \leq x \leq 2 \text { and } 4 \leq x \leq 6
$$

Continuity, End Behavior, and Limits

End Behavior

The end behavior of a function describes what the \boldsymbol{y} values do as $|\boldsymbol{x}|$ becomes greater and greater.

When \boldsymbol{x} becomes greater and greater, we say that \boldsymbol{x} approaches infinity, and we write $\boldsymbol{x} \rightarrow+\infty$.

When \boldsymbol{x} becomes more and more negative, we say that \boldsymbol{x} approaches negative infinity, and we write $\boldsymbol{x} \rightarrow$ $-\infty$.

Continuity, End Behavior, and Limits
The same notation can also be used with \boldsymbol{y} or $\boldsymbol{f}(\boldsymbol{x})$ and with real numbers instead of infinity.

Left - End Behavior (as \boldsymbol{x} becomes more and more negative): $\lim _{x \rightarrow-\infty} f(x)$

Right - End Behavior (as \boldsymbol{x} becomes more and more positive): $\lim _{x \rightarrow+\infty} f(x)$

The $\boldsymbol{f}(\boldsymbol{x})$ values may approach negative infinity, positive infinity, or a specific value. PreCalculusCoach.com

Continuity, End Behavior, and Limits
Sample Problem 3: Use the graph of each function to describe its end behavior. Support the conjecture numerically.
a. $f(x)=-3 x^{3}+6 x-1$

Continuity, End Behavior, and Limits
Sample Problem 3: Use the graph of each function to describe its end behavior. Support the conjecture numerically.
a. $f(x)=-3 x^{3}+6 x-1$

From the graph, it appears that:

$$
\begin{aligned}
& f(x) \rightarrow \infty \text { as } x \rightarrow-\infty \\
& f(x) \rightarrow-\infty \text { as } x \rightarrow \infty
\end{aligned}
$$

The table supports this conjecture.

x	-10^{4}	-10^{3}	0	$10^{\mathbf{3}}$	$\mathbf{1 0}^{4}$
y	$3 * \mathbf{1 0}^{12}$	$3 * \mathbf{1 0}^{9}$	-1	$-3 * \mathbf{1 0}^{9}$	$-3 * \mathbf{1 0}^{12}$

Continuity, End Behavior, and Limits
Sample Problem 3: Use the graph of each function to describe its end behavior. Support the conjecture numerically.
b. $f(x)=\frac{4 x-5}{4-x}$

Continuity, End Behavior, and Limits
Sample Problem 3: Use the graph of each function to describe its end behavior. Support the conjecture numerically.
b. $f(x)=\frac{4 x-5}{4-x}$

From the graph, it appears that:

$$
\begin{aligned}
& f(x) \rightarrow-4 \text { as } x \rightarrow-\infty \\
& f(x) \rightarrow-4 \text { as } x \rightarrow \infty
\end{aligned}
$$

The table supports this conjecture.

x	-10^{4}	-10^{3}	0	10^{3}	10^{4}
y	-3.9989	-3.9890	-1.25	-4.001	-4.0011

Continuity, End Behavior, and Limits

Increasing, Decreasing, and Constant Functions

A function \boldsymbol{f} is increasing on an interval \boldsymbol{I} if and only if for every \boldsymbol{a} and \boldsymbol{b} contained in $\boldsymbol{I},(\boldsymbol{a})<\boldsymbol{f}(\boldsymbol{b})$, whenever $\boldsymbol{a}<\boldsymbol{b}$.

A function \boldsymbol{f} is decreasing on an interval \boldsymbol{I} if and only if for every \boldsymbol{a} and \boldsymbol{b} contained in $I, \boldsymbol{f}(\boldsymbol{a})>\boldsymbol{f}(\boldsymbol{b})$ whenever $\boldsymbol{a}<\boldsymbol{b}$.

A function \boldsymbol{f} remains constant on an interval \boldsymbol{I} if and only if for every \boldsymbol{a} and \boldsymbol{b} contained in $\boldsymbol{I}, \boldsymbol{f}(\boldsymbol{a})=\boldsymbol{f}(\boldsymbol{b})$ whenever $\boldsymbol{a}<\boldsymbol{b}$.

Points in the domain of a function where the function changes from increasing to decreasing or from decreasing to increasing are called critical points.

Continuity, End Behavior, and Limits Sample Problem 4: Determine the interval(s) on which the function is increasing and the interval(s) on which the function is decreasing. a. $f(x)=x^{2}-3 x+2$

Continuity, End Behavior, and Limits Sample Problem 4: Determine the interval(s) on which the function is increasing and the interval(s) on which the function is decreasing.
a. $f(x)=x^{2}-3 x+2$

From the graph, it appears that:
A function $x^{2}-3 x+2$ is decreasing for $x<1.5$
A function $x^{2}-3 x+2$ is increasing for $x>1.5$

Continuity, End Behavior, and Limits Sample Problem 4: Determine the interval(s) on which the function is increasing and the interval(s) on which the function is decreasing.
a. $f(x)=x^{2}-3 x+2$

The table supports this conjecture.

x	-1	0	1	1.5	2	3
y	6	2	0	-0.25	-5.5	2

Continuity, End Behavior, and Limits Sample Problem 4: Determine the interval(s) on which the function is increasing and the interval(s) on which the function is decreasing.
b. $f(x)=x^{3}-\frac{1}{2} x^{2}-10 x+2$

Continuity, End Behavior, and Limits Sample Problem 4: Determine the interval(s) on which the function is increasing and the interval(s) on which the function is decreasing.
b. $f(x)=x^{3}-\frac{1}{2} x^{2}-10 x+2$

From the graph, it appears that:
A function $x^{3}-\frac{1}{2} x^{2}-10 x+2$ is increasing:

$$
x<-1.66 \text { and } x>2
$$

A function $x^{3}-\frac{1}{2} x^{2}-10 x+2$ is decreasing:
$-1.66<x<2$
for PreCalculusCoach.com

Continuity, End Behavior, and Limits Sample Problem 4: Determine the interval(s) on which the function is increasing and the interval(s) on which the function is decreasing.
b. $f(x)=x^{3}-\frac{1}{2} x^{2}-10 x+2$

The table supports this conjecture.

x	-2	-1.66	-1	0	2	3
y	12	12.65	10.5	2	-12	-5.5

