

Unit 1 Lesson 3

Students will be able to:

Interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.

Key Vocabulary:

Discontinuity,
A limit,
End Behavior

The graph of a continuous function has no breaks, holes, or gaps. You can trace the graph of a continuous function without lifting your pencil.

One condition for a function f(x) to be continuous at x=c is that the function must approach a unique function value as x -values approach c from the left and right sides.

The concept of approaching a value without necessarily ever reaching it is called **a limit.**

If the value of f(x) approaches a unique value L as x approaches c from each side, then the limit of f(x) as x approaches c is L.

$$\lim_{x\to c} f(x) = L$$

Functions that are not continuous are discontinuous.

Graphs that are discontinuous can exhibit:

Infinite discontinuity

A function has an infinite discontinuity at x = c, if the function value increases or decreases indefinitely as x approaches c from the left and right.

Functions that are not continuous are discontinuous.

Graphs that are discontinuous can exhibit:

Jump discontinuity

A function has a jump discontinuity at x = c if the limits of the function as x approaches c from the left and right exist but have two distinct values.

Functions that are not continuous are discontinuous.

Graphs that are discontinuous can exhibit:

Removable discontinuity, also called point discontinuity

Function has a removable discontinuity if the function is continuous everywhere except for a hole at x=c.

•

Continuity Test

A function f(x) is continuous at x=c, if it satisfies the following conditions:

- 1. f(x) is defined at c. f(c) exists.
- 2. f(x) approaches the same function value to the left and right of c. $\lim_{x\to c} f(x)$ exists
- 3. The function value that f(x) approaches from each side of c is f(c). $\lim_{x\to c} f(x) = f(c)$ PreCalculusCoach.com

Sample Problem 1: Determine whether each function is continuous at the given x -values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.

a. $f(x) = 3x^2 + x - 7$ at x = 1

a.
$$f(x) = 3x^2 + x - 7$$
 at $x = 1$

$$f(1) = 3 * 1^2 + 1 - 7 = -3$$

 $f(1)$ exists

a.
$$f(x) = 3x^2 + x - 7$$
 at $x = 1$

$$x \rightarrow 1^ y \rightarrow -3$$

x	0.9	0.99	0.999
f(x)	-3.67	-3.0697	-3.006997

a.
$$f(x) = 3x^2 + x - 7$$
 at $x = 1$

$$x \rightarrow 1^+ \ y \rightarrow -3$$

х	1.1	1.01	1.001
f(x)	-2.27	-2.9297	-2.992997

a.
$$f(x) = 3x^2 + x - 7$$
 at $x = 1$

$$f(1) = -3$$
 and $y \rightarrow -3$
from both side of $x = 1$

$$\lim_{x\to 1} 3x^2 + x - 7 = f(1)$$

$$f(x) = 3x^2 + x - 7$$
is continuous at $x = 1$

b.
$$f(x) = \frac{|2x|}{x}$$
 at $x = 0$

Sample Problem 1: Determine whether each function is continuous at the given x -values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.

$$\mathbf{b.} \quad f(x) = \frac{|2x|}{x} \quad at \quad x = \mathbf{0}$$

$$f(0) = \frac{|2*0|}{0} = \frac{0}{0}$$

The function is undefined at x = 0

$$\mathbf{b.} \quad f(x) = \frac{|2x|}{x} \quad at \quad x = \mathbf{0}$$

$$x \rightarrow 0^ y \rightarrow -2$$

x	-0.1	-0.01	-0.001
f(x)	-2	-2	-2

$$\mathbf{b.} \quad f(x) = \frac{|2x|}{x} \quad at \quad x = 0$$

$$x \rightarrow 0^+ y \rightarrow 2$$

x	0.1	0.01	0.001
f(x)	2	2	2

b.
$$f(x) = \frac{|2x|}{x} \quad at \quad x = 0$$

$$f(x) = \frac{|2x|}{x}$$
has jump discontinuity at $x = 0$
since y values are 2 and
$$-2 \text{ on opposite sides of } x = 0$$

PreCalculusCoach.com

c.
$$f(x) = \frac{x^2 - 4}{x + 2}$$
 at $x = -2$

Sample Problem 1: Determine whether each function is continuous at the given x -values. Justify using the continuity test. If Ascontinuous, identify: $f(x) = \frac{x^2 - 4}{x + 2} \quad at \quad x = -2$ $f(-2) = \frac{(-2)^2 - 4}{-2 + 2} = \frac{0}{0}$ As fined at

c.
$$f(x) = \frac{x^2 - 4}{x + 2}$$
 at $x = -2$

$$f(-2) = \frac{(-2)^2 - 4}{-2 + 2} = \frac{6}{6}$$

f(x) is undefined at x = -2

$$f(x) = \frac{x^2 - 4}{x + 2}$$

is discontinuous at x = -2

c.
$$f(x) = \frac{x^2 - 4}{x + 2}$$
 at $x = -2$

$$x \rightarrow -2^ y \rightarrow -4$$

x	-2.1	-2.01	-2.001
f(x)	-4.1	-4.01	-4.001

c.
$$f(x) = \frac{x^2 - 4}{x + 2}$$
 at $x = -2$

$x \rightarrow -2^+$	$y \rightarrow$	-4
----------------------	-----------------	-----------

х	-1.9	-1.99	-1.999
f(x)	-3.9	-3.99	-3.999

c.
$$f(x) = \frac{x^2 - 4}{x + 2}$$
 at $x = -2$

$$f(x) = \frac{x^2 - 4}{x + 2}$$
has point discontinuity at $x = -2$
since y value is -4
on opposite sides of $x = -2$

d.
$$f(x) = \frac{1}{3x^2}$$
 $at x = 0$

Sample Problem 1: Determine whether each function is continuous at the given x -values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.

d.
$$f(x) = \frac{1}{3x^2}$$
 at $x = 0$

$$f(\mathbf{0}) = \frac{1}{3 * \mathbf{0}^2} = \infty$$

f(x) is undefined at x = 0

$$f(x) = \frac{1}{3x^2}$$

is discontinuous at x = 0

d.
$$f(x) = \frac{1}{3x^2}$$
 $at x = 0$

$$x \rightarrow 0^ y \rightarrow +\infty$$

x	-0.1	-0.01	-0.001
f(x)	33.33	3,333.33	333, 333. 33

d.
$$f(x) = \frac{1}{3x^2}$$
 $at x = 0$

$$x \to 0^+$$
 $y \to +\infty$

x	0.1	0.01	0.001
f(x)	33.33	3,333.33	333, 333. 33

d.
$$f(x) = \frac{1}{3x^2}$$
 at $x = 0$

$$f(x) = \frac{1}{3x^2}$$
has infinity discontinuity
at $x = 0$
since y value is $+\infty$
when $x \to 0$

Intermediate Value Theorem

If f(x) is a continuous function and a < b and there is a value n such that n is between f(a) and f(b), then there is a number c, such that a < c < b and f(c) = n

The Location Principle

If f(x) is a continuous function and f(a) and f(b) have opposite signs, then there exists at least one value c, such that a < c < b and f(c) = 0.

That is, there is a zero between a and b.

Sample Problem 2: Determine between which consecutive integers the real zeros of function are located on the given interval.

a. $f(x) = (x-3)^2 - 4$ [0, 6]

Sample Problem 2: Determine between which consecutive integers the real zeros of function are located on the given interval.

x	0	1	2	3	4	5	6
y	5	0	-3	-4	-3	0	5

$$f(x)$$
 change sign in $0 \le x \le 2$
 $f(4)$ is negative and $f(6)$ is positive,
 $f(x)$ change sign in $4 \le x \le 6$
 $f(x)$ has zeros in intervals:
 $0 \le x \le 2$ and $4 \le x \le 6$

f(0) is positive and f(2) is negative,

End Behavior

The end behavior of a function describes what the y -values do as |x| becomes greater and greater.

When x becomes greater and greater, we say that x approaches infinity, and we write $x \to +\infty$.

When x becomes more and more negative, we say that x approaches negative infinity, and we write $x \to -\infty$.

Market PreCalculusCoach.com

The same notation can also be used with y or f(x) and with real numbers instead of infinity.

Left - End Behavior (as x becomes more and more

negative): $\lim_{x \to -\infty} f(x)$

Right - End Behavior (as x becomes more and more positive): $\lim_{x\to +\infty} f(x)$

The f(x) values may approach negative infinity, positive infinity, or a specific value. \square PreCalculusCoach.com

Sample Problem 3: Use the graph of each function to describe its end behavior. Support the conjecture numerically.

a. $f(x) = -3x^3 + 6x - 1$

Sample Problem 3: Use the graph of each function to describe its end behavior. Support the conjecture numerically.

a. $f(x) = -3x^3 + 6x - 1$

From the graph, it appears that:

$$f(x) \to \infty \ as \ x \to -\infty$$

$$f(x) \to -\infty \ as \ x \to \infty$$

The table supports this conjecture.

x	-10 ⁴	-10^{3}	0	10 ³	10 ⁴
y	3 * 10 ¹²	3 * 10 ⁹	-1	-3 * 10 ⁹	-3 * 10 ¹²

Sample Problem 3: Use the graph of each function to describe its end behavior. Support the conjecture numerically.

b.
$$f(x) = \frac{4x - 5}{4 - x}$$

Sample Problem 3: Use the graph of each function to describe its end behavior. Support the conjecture numerically.

b.
$$f(x) = \frac{4x - 5}{4 - x}$$

From the graph, it appears that:

$$f(x) \rightarrow -4 \ as \ x \rightarrow -\infty$$

$$f(x) \rightarrow -4 \ as \ x \rightarrow \infty$$

The table supports this conjecture.

x	-10 ⁴	-10^{3}	0	10 ³	10 ⁴
y	-3.9989	-3.9890	-1.25	-4.001	-4.0011

Increasing, Decreasing, and Constant Functions

A function f is decreasing on an interval I if and only if for every a and b contained in I, f(a) > f(b) whenever a < b.

A function f remains constant on an interval I if and only if for every a and b contained in I, f(a) = f(b) whenever a < b.

Points in the domain of a function where the function changes from increasing to decreasing or from decreasing to increasing are called **Critical points.**PreCalculusCoach.com

Continuity, End Behavior, and Limits

Sample Problem 4: Determine the interval(s) on which the function is increasing and the interval(s) on which the function is decreasing.

a.
$$f(x) = x^2 - 3x + 2$$

Sample Problem 4: Determine the interval(s) on which the function is increasing and the interval(s) on which the function is decreasing.

From the graph, it appears that: A function $x^2 - 3x + 2$ is decreasing for x < 1.5A function $x^2 - 3x + 2$ is increasing for x > 1.5

Sample Problem 4: Determine the interval(s) on which the function is increasing and the interval(s) on which the function is decreasing.

$$f(x) = x^2 - 3x + 2$$

The table supports this conjecture.

x	-1	0	1	1.5	2	3
y	6	2	0	-0.25	-5.5	2

Sample Problem 4: Determine the interval(s) on which the function is increasing and the interval(s) on which the function is decreasing.

b.
$$f(x) = x^3 - \frac{1}{2}x^2 - 10x + 2$$

Sample Problem 4: Determine the interval(s) on which the function is increasing and the interval(s) on which the function is decreasing.

b.
$$f(x) = x^3 - \frac{1}{2}x^2 - 10x + 2$$

From the graph, it appears that:

A function $x^3 - \frac{1}{2}x^2 - 10x + 2$ is increasing:

$$x < -1.66$$
 and $x > 2$

A function $x^3 - \frac{1}{2}x^2 - 10x + 2$ is decreasing:

$$-1.66 < x < 2$$

Sample Problem 4: Determine the interval(s) on which the function is increasing and the interval(s) on which the function is decreasing.

b.
$$f(x) = x^3 - \frac{1}{2}x^2 - 10x + 2$$

The table supports this conjecture.

\boldsymbol{x}	-2	-1.66	-1	0	2	3
v	12	12.65	10 . 5	2	-12	-5.5

