\qquad Period: \qquad Date: \qquad

Continuity, End Behavior, and Limits Guided Notes

The graph of a continuous function has no breaks, holes, or gaps. You can trace the graph of a continuous function without lifting your pencil.

One condition for a function $\boldsymbol{f}(\boldsymbol{x})$ to be continuous at $\boldsymbol{x}=\boldsymbol{c}$ is that the function must approach a unique function value as \boldsymbol{x}-values approach \boldsymbol{c} from the left and right sides. The concept of approaching a value without necessarily ever reaching it is called a limit.

If the value of $\boldsymbol{f}(\boldsymbol{x})$ approaches a unique value \boldsymbol{L} as \boldsymbol{x} approaches \boldsymbol{c} from each side, then the limit of $\boldsymbol{f}(\boldsymbol{x})$ as \boldsymbol{x} approaches \boldsymbol{c} is $L . \quad \lim _{\boldsymbol{x} \rightarrow \boldsymbol{c}} f(\boldsymbol{x})=\boldsymbol{L}$

Functions that are not continuous are discontinuous. Graphs that are discontinuous can exhibit:

- Infinite discontinuity (A function has an infinite discontinuity at $\boldsymbol{x}=\boldsymbol{c}$ if the function value increases or decreases indefinitely as \boldsymbol{x} approaches \boldsymbol{c} from the left and right)
- Jump discontinuity,(A function has a jump discontinuity at $\boldsymbol{x}=\boldsymbol{c}$ if the limits of the function as \boldsymbol{x} approaches \boldsymbol{C} from the left and right exist but have two distinct values.
- Removable discontinuity, also called point discontinuity (function has a removable discontinuity if the function is continuous everywhere except for a hole at $\boldsymbol{x}=\boldsymbol{c}$.

Continuity Test

A function $\boldsymbol{f}(\boldsymbol{x})$ is continuous at $\boldsymbol{x}=\boldsymbol{c}$ if it satisfies the following conditions.

1. $\boldsymbol{f}(\boldsymbol{x})$ is defined at c. $\boldsymbol{f}(\boldsymbol{c})$ exists.
2. $f(x)$ approaches the same function value to the left and right of $\boldsymbol{c} . \quad \lim _{\boldsymbol{x} \rightarrow \boldsymbol{c}} f(\boldsymbol{x})$ exists
3. The function value that $f(x)$ approaches from each side of \boldsymbol{c} is $f(\boldsymbol{c}) . \quad \lim _{\boldsymbol{x} \rightarrow \boldsymbol{c}} f(x)=f(\boldsymbol{c})$

Sample Problem 1: Determine whether each function is continuous at the given \boldsymbol{x}-values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.
a. $f(x)=3 x^{2}+x-7$ at $x=1$

\qquad
\qquad
Continuity, End Behavior, and Limits Guided Notes
b. $\quad f(x)=\frac{|2 x|}{x}$ at $x=0$

c. $f(x)=\frac{x^{2}-4}{x+2}$ at $x=-2$

\qquad Date: \qquad

Continuity, End Behavior, and Limits Guided Notes

d.

$$
f(x)=\frac{1}{3 x^{2}} \quad \text { at } \quad x=0
$$

Intermediate Value Theorem

If $\boldsymbol{f}(\boldsymbol{x})$ is a continuous function and $\boldsymbol{a}<\boldsymbol{b}$ and there is a value \boldsymbol{n} such that \boldsymbol{n} is between $\boldsymbol{f}(\boldsymbol{a})$ and $\boldsymbol{f}(\boldsymbol{b})$, then there is a number \boldsymbol{c}, such that $\boldsymbol{a}<\boldsymbol{c}<\boldsymbol{b}$ and $\boldsymbol{f}(\boldsymbol{c})=\boldsymbol{n}$

The Location Principle

If $\boldsymbol{f}(\boldsymbol{x})$ is a continuous function and $\boldsymbol{f}(\boldsymbol{a})$ and $\boldsymbol{f}(\boldsymbol{b})$ have opposite signs, then there exists at least one value \boldsymbol{c}, such that $\boldsymbol{a}<\boldsymbol{c}<\boldsymbol{b}$ and $\boldsymbol{f}(\boldsymbol{c})=\mathbf{0}$. That is, there is a zero between \boldsymbol{a} and \boldsymbol{b}.

Sample Problem 2: Determine between which consecutive integers the real zeros of function are located on the given interval.
a. $f(x)=(x-3)^{2}-4 \quad[0,6]$

\qquad Date: \qquad

Continuity, End Behavior, and Limits Guided Notes

End Behavior

The end behavior of a function describes what the \boldsymbol{y}-values do as $|\boldsymbol{x}|$ becomes greater and greater.
When \boldsymbol{x} becomes greater and greater, we say that \boldsymbol{x} approaches infinity, and we write $\boldsymbol{x} \rightarrow+\infty$.
When \boldsymbol{x} becomes more and more negative, we say that \boldsymbol{x} approaches negative infinity, and we write $\boldsymbol{x} \rightarrow-\infty$.
The same notation can also be used with \boldsymbol{y} or $\boldsymbol{f}(\boldsymbol{x})$ and with real numbers instead of infinity.
Left - End Behavior (as x becomes more and more negative): $\lim _{x \rightarrow-\infty} f(x)$
Right - End Behavior (as \boldsymbol{x} becomes more and more positive): $\lim _{x \rightarrow+\infty} f(x)$
The $\boldsymbol{f}(\boldsymbol{x})$ values may approach negative infinity, positive infinity, or a specific value.
Sample Problem 3: Use the graph of each function to describe its end behavior. Support the conjecture numerically.
a. $f(x)=-3 x^{3}+6 x-1$

b. $f(x)=\frac{4 x-5}{4-x}$

\qquad Date: \qquad

Continuity, End Behavior, and Limits Guided Notes

Increasing, Decreasing, and Constant Functions
A function \boldsymbol{f} is increasing on an interval \boldsymbol{I} if and only if for every \boldsymbol{a} and \boldsymbol{b} contained in $\boldsymbol{I},(\boldsymbol{a})<\boldsymbol{f}(\boldsymbol{b})$, whenever $\boldsymbol{a}<\boldsymbol{b}$.
A function \boldsymbol{f} is decreasing on an interval \boldsymbol{I} if and only if for every \boldsymbol{a} and \boldsymbol{b} contained in $\boldsymbol{I}, \boldsymbol{f}(\boldsymbol{a})>\boldsymbol{f}(\boldsymbol{b})$ whenever $\boldsymbol{a}<\boldsymbol{b}$.
A function \boldsymbol{f} remains constant on an interval \boldsymbol{I} if and only if for every \boldsymbol{a} and \boldsymbol{b} contained in $\boldsymbol{I}, \boldsymbol{f}(\boldsymbol{a})=\boldsymbol{f}(\boldsymbol{b})$ whenever $\boldsymbol{a}<\boldsymbol{b}$.

Points in the domain of a function where the function changes from increasing to decreasing or from decreasing to increasing are called critical points.

Sample Problem 4: Determine the interval(s) on which the function is increasing and the interval(s) on which the function is decreasing.
a. $\quad f(x)=x^{2}-3 x+2$

b. $f(x)=x^{3}-\frac{1}{2} x^{2}-10 x+2$

