\qquad Period: \qquad Date: \qquad

Continuity, End Behavior, and Limits bell work

1. Complete the following statement.
a. The graph of a \qquad has no breaks, holes, or gaps. You can trace the graph of a \qquad without lifting your pencil.
b. Points in the domain of a function where the function changes from increasing to decreasing or from decreasing to increasing are called \qquad .
2. Write T for true or F for false
a. A function \boldsymbol{f} remains constant on an interval \boldsymbol{I} if and only if for every \boldsymbol{a} and \boldsymbol{b} contained in \boldsymbol{I}, $\boldsymbol{f}(\boldsymbol{a})=\boldsymbol{f}(\boldsymbol{b})$ whenever $\boldsymbol{a}<\boldsymbol{b}$.
b. A function \boldsymbol{f} is increasing on an interval \boldsymbol{I} if and only if for every \boldsymbol{a} and \boldsymbol{b} contained in \boldsymbol{I}, $\boldsymbol{f}(\boldsymbol{a})>\boldsymbol{f}(\boldsymbol{b})$ whenever $\boldsymbol{a}<\boldsymbol{b}$.

Multiple Choices

3. Find $\lim _{x \rightarrow 0} x^{2}-23$!
a. 23
b.
-23
C.

0
4. Find $\lim _{x \rightarrow 2} \frac{x-5}{x+5}$
a.
$-\frac{3}{7}$
b.
C.
5. Find $\lim _{x \rightarrow 1} \frac{2}{x-5}$
a.
$-\frac{1}{2}$
b.
C.
$\frac{1}{2}$
$\frac{2}{3}$
\qquad Period: \qquad Date: \qquad

Continuity, End Behavior, and Limits Bell work

ANSWERS

1. Complete the following statement.
a. The graph of a continuous function has no breaks, holes, or gaps. You can trace the graph of a continuous function without lifting your pencil.
b. Points in the domain of a function where the function changes from increasing to decreasing or from decreasing to increasing are called critical points.

2. Write T for true or F for false

a. A function \boldsymbol{f} remains constant on an interval \boldsymbol{I} if and only if for every \boldsymbol{a} and \boldsymbol{b} contained in \boldsymbol{I}, $\boldsymbol{f}(\boldsymbol{a})=\boldsymbol{f}(\boldsymbol{b})$ whenever $\boldsymbol{a}<\boldsymbol{b}$.
b. A function \boldsymbol{f} is increasing on an interval \boldsymbol{I} if and only if for every \boldsymbol{a} and \boldsymbol{b} contained in \boldsymbol{I}, F $\boldsymbol{f}(\boldsymbol{a})>\boldsymbol{f}(\boldsymbol{b})$ whenever $\boldsymbol{a}<\boldsymbol{b}$.

Multiple Choices

3. Find $\lim _{x \rightarrow 0} x^{2}-23$!
a.
23
b.
-23
C.

0
4. Find $\lim _{x \rightarrow 2} \frac{x-5}{x+5}$
a.

$$
-\frac{3}{7}
$$

b. $\frac{3}{7}$
C.

2
5. Find $\lim _{x \rightarrow 1} \frac{2}{x-5}$

a.
b.
c.
c.

\qquad Date: \qquad
Continuity, End Behavior, and Limits Bell work

