

Unit 1 Lesson 6

Students will be able to:

Combine standard function types using arithmetic operations

Compose functions

Key Vocabulary:

Function operation
Composition of function
Decomposition of Composite Functions
Domain of composite function

Function Operations

Let f and g be any two functions. You can add, subtract, multiply or divide f(x) and g(x) to form a new function.

The domain of new function consist of the x -values that are in the domains of both f(x) and g(x).

When new function involves division, the domain does not include x -values for which the denominator is equal to zero.

PreCalculusCoach.com

Operation	Definition	
Addition	(f+g)(x)=f(x)+g(x)	
Subtraction	(f-g)(x) = f(x) - g(x)	
Multiplication	(f*g)(x) = f(x)*g(x)	
Division	$(f \div g)(x) = f(x) \div g(x)$ $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \text{where } g(x) \neq 0$	
f PreCalculusCoach.com		

Sample Problem 1: : Find (f+g)(x), (f-g)(x), (f*g)(x), and $(\frac{f}{g})(x)$ for each f(x) and g(x). Determine the domain of each new function.

a.
$$f(x) = x^2 + 2x - 1$$
 $g(x) = x - 5$

Function Operations and Composition of Functions

Sample Problem 1: : Find (f+g)(x), (f-g)(x), (f*g)(x), and

Sample Problem 1: : Find
$$(f+g)(x), (f-g)(x), (f*g)(x)$$
, and $\left(\frac{f}{g}\right)(x)$ for each $f(x)$ and $g(x)$. Determine the domain of each new function.

a. $f(x) = x^2 + 2x - 1$ g(x) = x - 5 $(f+g)(x) = (x^2+2x-1) + (x-5)$

$$(f+g)(x) = x^2 + 3x - 6$$

$$D_{f+q}=(-\infty,\infty)$$

Function Operations and Composition of Functions

Sample Problem 1: Find (f+g)(x), (f-g)(x), (f*g)(x), and $(\frac{f}{g})(x)$ for each f(x) and g(x). Determine the domain of each new

function.

a.
$$f(x) = x^2 + 2x - 1$$
 $g(x) = x - 5$ $(f - g)(x) = (x^2 + 2x - 1) - (x - 5)$

$$(f-g)(x) = x^2 + 2x - 1 - x + 5$$
$$(f-g)(x) = x^2 + x + 4$$

$$D_{f-g}=(-\infty,\infty)$$

Function Operations and Composition of Functions Sample Problem 1: : Find (f+g)(x), (f-g)(x), (f*g)(x), and

$$\left(\frac{f}{g}\right)(x)$$
 for each $f(x)$ and $g(x)$. Determine the domain of each new function.

a. $f(x) = x^2 + 2x - 1$ g(x) = x - 5 $(f * g)(x) = (x^2 + 2x - 1) * (x - 5)$

$$(f * g)(x) = x^3 - 3x^2 - 11x + 5$$

$$D_{f*g}=(-\infty,\infty)$$

Sample Problem 1: : Find (f+g)(x), (f-g)(x), (f*g)(x), and $\left(\frac{f}{g}\right)(x)$ for each f(x) and g(x). Determine the domain of each new function

function.
$$g(x) = g(x) = x - 5$$

$$\left(\frac{f}{g}\right)(x) = \frac{x^2 + 2x - 1}{x - 5}$$

$$D_{\frac{f}{g}} = (-\infty, 5) \cup (5, \infty)$$

Sample Problem 1: : Find (f+g)(x), (f-g)(x), (f*g)(x), and $(\frac{f}{g})(x)$ for each f(x) and g(x). Determine the domain of each new function.

b.
$$f(x) = x^2 - 81$$
 $g(x) = x + 9$

Function Operations and Composition of Functions Sample Problem 1: : Find (f + g)(x), (f - g)(x), (f * g)(x), and

 $\left(\frac{f}{g}\right)(x)$ for each f(x) and g(x). Determine the domain of each new function.

function.

b.
$$f(x) = x^2 - 81$$
 $g(x) = x + 9$ $(f+g)(x) = (x^2 - 81) + (x + 9)$

$$(f+g)(x) = (x + g)(x + g)$$

 $(f+g)(x) = x^2 + x - 72$

$$D_{f+g}=(-\infty,\infty)$$

Function Operations and Composition of Functions Sample Problem 1: : Find (f + g)(x), (f - g)(x), (f * g)(x), and

 $\left(\frac{f}{g}\right)(x)$ for each f(x) and g(x). Determine the domain of each new function.

function.

b.
$$f(x) = x^2 - 81$$
 $g(x) = x + 9$ $(f - g)(x) = (x^2 - 81) - (x + 9)$

$$(f-g)(x) = x^2 - 81 - x - 9$$
$$(f-g)(x) = x^2 - x - 90$$

$$D_{f-g}=(-\infty,\infty)$$

Function Operations and Composition of Functions

Sample Problem 1: Find (f+g)(x), (f-g)(x), (f*g)(x), and

 $\left(\frac{f}{g}\right)(x)$ for each f(x) and g(x). Determine the domain of each new function.

function.
$$f(x) = x^2 - 81 \qquad g(x) = x + 9$$

$$(f * g)(x) = (x^2 - 81) * (x + 9)$$

$$(f * g)(x) = x^3 + 9x^2 - 81x - 729$$

$$D_{f*g} = (-\infty, \infty)$$

Function Operations and Composition of Functions Seven le Duchley 1: $\mathbf{F} = \mathbf{F} \cdot \mathbf{F} \cdot$

Sample Problem 1: : Find (f+g)(x), (f-g)(x), (f*g)(x), and $\left(\frac{f}{g}\right)(x)$ for each f(x) and g(x). Determine the domain of each new function.

b.
$$f(x) = x^2 - 81$$
 $g(x) = x + 9$
$$\left(\frac{f}{g}\right)(x) = \frac{x^2 - 81}{x + 9} = \frac{(x + 9)(x - 9)}{x + 9}$$

$$\left(\frac{f}{g}\right) = x - 9$$
If the function can be simplified, determine the domain before simplifying!

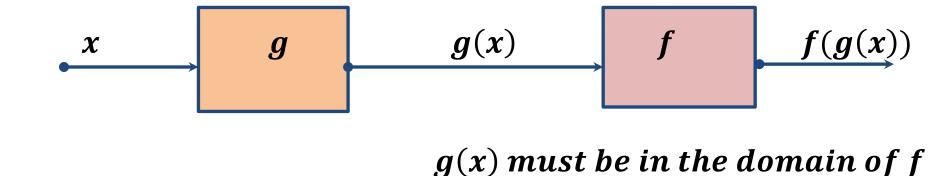
Composition of Functions

The composition of function f with function g is defined by $(f \circ g)(x) = f(g(x))$

The domain of the composite function $\mathbf{f} \circ \mathbf{g}$ is the set of all such that:

- 1. x is in the domain of g and
- 2. g(x) is in the domain of f.

x must be in the domain of g



a.
$$f(x) = 2x - 3$$
 $g(x) = x + 1$ $(f \circ g)(x) = ?$ $D_{f \circ g} = ?$

a.
$$f(x) = 2x - 3$$
 $g(x) = x + 1$
 $(f \circ g)(x) = 2$ $D_{f(x)} = 2$

$$(f \circ g)(x) = ?$$
 $D_{f \circ g} = ?$ $(f \circ g)(x) = f(g(x))$

$$f(g(x)) = 2(g(x)) - 3$$

$$f(g(x)) - 2(g(x)) - 3$$

$$f(g(x)) = 2(x+1) - 3$$

$$f(g(x)) = 2x + 2 - 3$$
$$f(g(x)) = 2x - 1$$

$$D_{f\circ g}=(-\infty,\infty)$$

b.
$$f(x) = x - 3$$
 $g(x) = x^2 + 1$ $(g \circ f)(x) = ?$ $D_{g \circ f} = ?$

Sample Problem 2: Find each composite function. Determine the domain of each composite function.

b.
$$f(x) = x - 3$$
 $g(x) = x^2 + 1$ $(g \circ f)(x) = ?$ $D_{g \circ f} = ?$ $(a \circ f)(x) = a(f(x))$

$$(g \circ f)(x) = g(f(x))$$

$$g(f(x)) = (f(x))^{2} + 1$$

$$g(f(x)) = (x - 3)^{2} + 1$$

$$g(f(x)) = (x-3)^2 + 1$$

 $g(f(x)) = x^2 - 6x + 9 + 1$

$$g(f(x)) = x^2 - 6x + 9 +$$

$$g(f(x)) = x^2 - 6x + 10$$

 $D_{g \circ f} = (-\infty, \infty)$

c.
$$f(x) = \frac{2}{x-3}$$
 $g(x) = \frac{1}{x}$ $(f \circ g)(x) = ?$ $D_{f \circ g} = ?$

c.
$$f(x) = \frac{2}{x-3}$$
 $g(x) = \frac{1}{x}$ $(f \circ g)(x) = ?$

$$f(x) = \frac{1}{x-3} \qquad g(x) = \frac{1}{x}$$

$$(f \circ g)(x) = f(g(x))$$

$$(f \circ g)(x) = f(g(x))$$

$$f(g(x)) = \frac{2}{g(x) - 3}$$

$$f(g(x)) = \frac{2}{\frac{1}{x} - 3}$$

$$f(g(x)) = \frac{1}{x} - 3$$

$$(x)\big) = \frac{2}{g(x)}$$

$$=\frac{2}{g(x)-3}$$

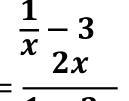
$$= \frac{1}{g(x)-3}$$

$$= \frac{2}{1}$$

$$\frac{\overline{g(x)}-3}{2}$$

$$\frac{2}{(2)-3}$$

$$\frac{1}{x} \neq 0$$



c.
$$f(x) = \frac{2}{x-3}$$
 $g(x) = \frac{1}{x}$ $D_{f \circ g} = ?$

$$D_g = (-\infty, \mathbf{0}) \cup (\mathbf{0}, \infty)$$

$$D_{f \circ g} = (-\infty, \mathbf{0}) \cup (\mathbf{0}, \frac{1}{3}) \cup (\frac{1}{3}, \infty)$$

d.
$$f(x) = \frac{2}{x}$$
 $g(x) = \frac{1}{x}$ $(g \circ f)(x) = ?$ $D_{g \circ f} = ?$

Function Operations and Composition of Functions Sample Problem 2: Find each composite function. Determine the

domain of each composite function.

d.
$$f(x) = \frac{2}{x}$$
 $g(x) = \frac{1}{x}$ $(g \circ f)(x) = ?$

$$g \circ f)(x) = ?$$

$$(g \circ f)(x) = g(f(x))$$

$$g(f(x)) = \frac{1}{f(x)} \qquad \frac{2}{x} \neq 0 \qquad x \neq 0$$

$$\frac{2}{x} \neq 0$$

$$x \neq 0$$

$$g(f(x)) =$$

 $g(f(x)) = \frac{x}{2}$

$$\frac{f(x)}{2}$$

$$g(f(x)) = \frac{1}{2}$$

$$f(x)$$
 x $-\frac{1}{x}$

d.
$$f(x) = \frac{2}{x}$$
 $g(x) = \frac{1}{x}$ $D_{g \circ f} = ?$

$$\boldsymbol{D}_{\boldsymbol{g}} = (-\infty, \mathbf{0}) \cup (\mathbf{0}, \infty)$$

$$D_{q \circ f} = (-\infty, 0) \cup (0, \infty)$$

Sample Problem 3:: Find and then evaluate each composite function.

a.
$$f(x) = \sqrt{x}$$
 $g(x) = x - 2$ $(f \circ g)(6) = ?$

Sample Problem 3: : Find and then evaluate each composite function.

a.
$$f(x) = \sqrt{x}$$
 $g(x) = x - 2$ $(f \circ g)(6) = ?$

$$(f \circ g)(x) = f(g(x)) \qquad f(g(6)) = \sqrt{6-2}$$

$$f(g(x)) = \sqrt{g(x)} \qquad f(g(6)) = \sqrt{4}$$

$$f(g(x)) = \sqrt{x-2} \qquad f(g(6)) = 2$$

Sample Problem 3: : Find and then evaluate each composite function.

b.
$$f(x) = 6x - 1$$
 $g(x) = \frac{x+3}{2}$ $(g \circ f)(2) = ?$

Sample Problem 3: : Find and then evaluate each composite function.

b.
$$f(x) = 6x - 1$$
 $g(x) = \frac{x+3}{2}$ $(g \circ f)(2) = ?$

$$(g \circ f)(x) = g(f(x))$$

$$g(f(x)) = \frac{f(x) + 3}{2}$$

$$g(f(2)) = 3 * 2 + 1$$

2	g(f(z))	
$g(f(x)) = \frac{(6x-1)+3}{2}$	g(f(2)) = 7	
$g(f(x)) - \frac{1}{2}$	·	

$$g(f(x)) = \frac{(3x + 2) + 3}{2}$$

$$g(f(x)) = \frac{6x + 2}{2} = \frac{2(3x + 1)}{2}$$

$$g(f(x)) = \frac{6x+2}{2} = \frac{2(3x+1)}{2}$$

g(f(x)) = 3x + 1**f**■ PreCalculusCoach.com

Decomposition of Composite Functions

When you form a composite function, you "compose" two functions to form a new function. It is also possible to reverse this process. You can "decompose" a given function and express it as a composition of two functions. Although there is more than one way to do this, there is often a "natural" selection that comes to mind first.

Sample Problem 4: Express h(x) as a composition of two functions f and g $(f \circ g)(x)$.

 $a. \quad h(x) = \left(x^3 - 3x\right)^2$

Sample Problem 4: Express h(x) as a composition of two functions f and g $(f \circ g)(x)$.

a. $h(x) = \left(x^3 - 3x\right)^2$

$$h(x) = (f \circ g)(x) = f(g(x))$$
$$f(g(x)) = (g(x))^{2} = (x^{3} - 3x)^{2}$$

$$f(x) = x^2 \qquad \qquad g(x) = x^3 - 3x$$

Sample Problem 4: Express h(x) as a composition of two functions f and g $(f \circ g)(x)$.

$$\mathbf{b.} \quad h(x) = \frac{3}{3x - 5}$$

Sample Problem 4: Express h(x) as a composition of two functions f and g ($f \circ g$)(x).

and
$$g(f \circ g)(x)$$
.

b. $h(x) = \frac{3}{3x - 5}$

$$h(x) = (f \circ g)(x) = f(g(x))$$
$$f(g(x)) = \frac{3}{g(x) - 5} = \frac{3}{3x - 5}$$

$$f(x) = \frac{3}{x-5} \qquad g(x) = 3x$$