for PreCalculusCoach.com

Function Operations and Composition of Functions

Unit 1 Lesson 6

Function Operations and Composition of Functions

Students will be able to:

Combine standard function types using arithmetic operations
Compose functions
Key Vocabulary:
Function operation
Composition of function
Decomposition of Composite Functions
Domain of composite function

Function Operations and Composition of Functions

Function Operations

Let \boldsymbol{f} and \boldsymbol{g} be any two functions. You can add, subtract, multiply or divide $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ to form a new function.

The domain of new function consist of the \boldsymbol{x}-values that are in the domains of both $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$.
When new function involves division, the domain does not include \boldsymbol{x}-values for which the denominator is equal to zero.

Function Operations and Composition of Functions

Operation	Definition
Addition	$(f+g)(x)=f(x)+g(x)$
Subtraction	$(f-g)(x)=f(x)-g(x)$
Multiplication	$(f * g)(x)=f(x) * g(x)$
Division	$(f \div g)(x)=f(x) \div g(x)$
	$(x)=\frac{f(x)}{g(x)}$ where $g(x) \neq 0$

Function Operations and Composition of Functions
Sample Problem 1: : Find $(\boldsymbol{f}+\boldsymbol{g})(\boldsymbol{x}),(\boldsymbol{f}-\boldsymbol{g})(\boldsymbol{x}),(\boldsymbol{f} * \boldsymbol{g})(\boldsymbol{x})$, and $\left(\frac{f}{g}\right)(x)$ for each $f(x)$ and $g(x)$. Determine the domain of each new function.
a. $f(x)=x^{2}+2 x-1 \quad g(x)=x-5$

Function Operations and Composition of Functions
Sample Problem 1: : Find $(\boldsymbol{f}+\boldsymbol{g})(\boldsymbol{x}),(\boldsymbol{f}-\boldsymbol{g})(\boldsymbol{x}),(\boldsymbol{f} * \boldsymbol{g})(\boldsymbol{x})$, and $\left(\frac{f}{g}\right)(x)$ for each $f(x)$ and $g(x)$. Determine the domain of each new function.
a. $f(x)=x^{2}+2 x-1 \quad g(x)=x-5$

$$
\begin{aligned}
& (f+g)(x)=\left(x^{2}+2 x-1\right)+(x-5) \\
& (f+g)(x)=x^{2}+3 x-6
\end{aligned}
$$

$$
\boldsymbol{D}_{f+g}=(-\infty, \infty)
$$

Function Operations and Composition of Functions
Sample Problem 1: : Find $(\boldsymbol{f}+\boldsymbol{g})(\boldsymbol{x}),(\boldsymbol{f}-\boldsymbol{g})(\boldsymbol{x}),(\boldsymbol{f} * \boldsymbol{g})(\boldsymbol{x})$, and $\left(\frac{f}{g}\right)(x)$ for each $f(x)$ and $g(x)$. Determine the domain of each new function.
a. $f(x)=x^{2}+2 x-1 \quad g(x)=x-5$

$$
\begin{aligned}
& (f-g)(x)=\left(x^{2}+2 x-1\right)-(x-5) \\
& (f-g)(x)=x^{2}+2 x-1-x+5 \\
& (f-g)(x)=x^{2}+x+4 \\
& D_{f-g}=(-\infty, \infty)
\end{aligned}
$$

Function Operations and Composition of Functions
Sample Problem 1: : Find $(\boldsymbol{f}+\boldsymbol{g})(\boldsymbol{x}),(\boldsymbol{f}-\boldsymbol{g})(\boldsymbol{x}),(\boldsymbol{f} * \boldsymbol{g})(\boldsymbol{x})$, and $\left(\frac{f}{g}\right)(x)$ for each $f(x)$ and $g(x)$. Determine the domain of each new function.
a. $f(x)=x^{2}+2 x-1 \quad g(x)=x-5$

$$
\begin{aligned}
& (f * g)(x)=\left(x^{2}+2 x-1\right) *(x-5) \\
& (f * g)(x)=x^{3}-3 x^{2}-11 x+5
\end{aligned}
$$

$$
\boldsymbol{D}_{f * g}=(-\infty, \infty)
$$

Function Operations and Composition of Functions
Sample Problem 1: : Find $(\boldsymbol{f}+\boldsymbol{g})(\boldsymbol{x}),(\boldsymbol{f}-\boldsymbol{g})(\boldsymbol{x}),(\boldsymbol{f} * \boldsymbol{g})(\boldsymbol{x})$, and $\left(\frac{f}{g}\right)(x)$ for each $f(x)$ and $g(x)$. Determine the domain of each new function.
a. $f(x)=x^{2}+2 x-1 \quad g(x)=x-5$

$$
\begin{aligned}
& \left(\frac{f}{g}\right)(x)=\frac{x^{2}+2 x-1}{x-5} \\
& D_{\frac{f}{g}}=(-\infty, 5) \cup(5, \infty)
\end{aligned}
$$

Function Operations and Composition of Functions
Sample Problem 1: : Find $(\boldsymbol{f}+\boldsymbol{g})(\boldsymbol{x}),(\boldsymbol{f}-\boldsymbol{g})(\boldsymbol{x}),(\boldsymbol{f} * \boldsymbol{g})(\boldsymbol{x})$, and $\left(\frac{f}{g}\right)(x)$ for each $f(x)$ and $g(x)$. Determine the domain of each new function.
b. $f(x)=x^{2}-81 \quad g(x)=x+9$

Function Operations and Composition of Functions
Sample Problem 1: : Find $(\boldsymbol{f}+\boldsymbol{g})(\boldsymbol{x}),(\boldsymbol{f}-\boldsymbol{g})(\boldsymbol{x}),(\boldsymbol{f} * \boldsymbol{g})(\boldsymbol{x})$, and $\left(\frac{f}{g}\right)(x)$ for each $f(x)$ and $g(x)$. Determine the domain of each new function.
b. $f(x)=x^{2}-81 \quad g(x)=x+9$

$$
\begin{aligned}
& (f+g)(x)=\left(x^{2}-81\right)+(x+9) \\
& (f+g)(x)=x^{2}+x-72
\end{aligned}
$$

$$
\boldsymbol{D}_{\boldsymbol{f}+\boldsymbol{g}}=(-\infty, \infty)
$$

Function Operations and Composition of Functions
Sample Problem 1: : Find $(f+g)(\boldsymbol{x}),(\boldsymbol{f}-\boldsymbol{g})(\boldsymbol{x}),(\boldsymbol{f} * \boldsymbol{g})(\boldsymbol{x})$, and $\left(\frac{f}{g}\right)(x)$ for each $f(x)$ and $g(x)$. Determine the domain of each new function.
b. $f(x)=x^{2}-81 \quad g(x)=x+9$

$$
\begin{aligned}
& (f-g)(x)=\left(x^{2}-81\right)-(x+9) \\
& (f-g)(x)=x^{2}-81-x-9 \\
& (f-g)(x)=x^{2}-x-90 \\
& D_{f-g}=(-\infty, \infty)
\end{aligned}
$$

Function Operations and Composition of Functions
Sample Problem 1: : Find $(\boldsymbol{f}+\boldsymbol{g})(\boldsymbol{x}),(\boldsymbol{f}-\boldsymbol{g})(\boldsymbol{x}),(\boldsymbol{f} * \boldsymbol{g})(\boldsymbol{x})$, and $\left(\frac{f}{g}\right)(x)$ for each $f(x)$ and $g(x)$. Determine the domain of each new function.
b. $f(x)=x^{2}-81 \quad g(x)=x+9$

$$
\begin{aligned}
& (f * g)(x)=\left(x^{2}-81\right) *(x+9) \\
& (f * g)(x)=x^{3}+9 x^{2}-81 x-729
\end{aligned}
$$

$$
\boldsymbol{D}_{\boldsymbol{f} * \boldsymbol{g}}=(-\infty, \infty)
$$

Function Operations and Composition of Functions
Sample Problem 1: : Find $(\boldsymbol{f}+\boldsymbol{g})(\boldsymbol{x}),(\boldsymbol{f}-\boldsymbol{g})(\boldsymbol{x}),(\boldsymbol{f} * \boldsymbol{g})(\boldsymbol{x})$, and $\left(\frac{f}{g}\right)(x)$ for each $f(x)$ and $g(x)$. Determine the domain of each new function.
b. $f(x)=x^{2}-81 \quad g(x)=x+9$

$$
\left(\frac{f}{g}\right)(x)=\frac{x^{2}-81}{x+9}=\frac{(x+9)(x-9)}{x+9}
$$

$$
\left(\frac{f}{g}\right)=x-9
$$

If the function can be simplified,

$$
\boldsymbol{D}_{\underline{\boldsymbol{f}}}=(-\infty,-9) \cup(-9, \infty)
$$ determine the domain before simplifying!

Function Operations and Composition of Functions

Composition of Functions

The composition of function \boldsymbol{f} with function \boldsymbol{g} is defined by $(\boldsymbol{f} \circ$ $\boldsymbol{g})(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{g}(\boldsymbol{x}))$

The domain of the composite function $\boldsymbol{f} \circ \boldsymbol{g}$ is the set of all such that:

1. \boldsymbol{x} is in the domain of \boldsymbol{g} and
2. $\boldsymbol{g}(\boldsymbol{x})$ is in the domain of \boldsymbol{f}.
x must be in the domain of g

Function Operations and Composition of Functions
Sample Problem 2: Find each composite function. Determine the domain of each composite function.

$$
\begin{array}{lll}
\text { a. } & f(x)=2 x-3 & g(x)=x+1 \\
(f \circ g)(x)=? & D_{f \circ g}=?
\end{array}
$$

Function Operations and Composition of Functions
Sample Problem 2: Find each composite function. Determine the domain of each composite function.

$$
\text { a. } \begin{array}{ll}
f(x)=2 x-3 & g(x)=x+1 \\
(f \circ g)(x)=? \quad D_{f \circ g}=? \\
(f \circ g)(x)=f(g(x)) \\
f(g(x))=2(g(x))-3 \\
f(g(x))=2(x+1)-3 \\
f(g(x))=2 x+2-3 \\
f(g(x))=2 x-1
\end{array}
$$

$$
\boldsymbol{D}_{\boldsymbol{f} \circ \boldsymbol{g}}=(-\infty, \infty)
$$

Function Operations and Composition of Functions
Sample Problem 2: Find each composite function. Determine the domain of each composite function.
b. $f(x)=x-3$
$g(x)=x^{2}+1$
$(g \circ f)(x)=$?
$D_{g \circ f}=$?

Function Operations and Composition of Functions
Sample Problem 2: Find each composite function. Determine the domain of each composite function.

$$
\text { b. } \begin{array}{ll}
f(x)=x-3 & g(x)=x^{2}+1 \\
(g \circ f)(x)=? \quad D_{g \circ f}=? \\
(g \circ f)(x)=g(f(x)) \\
& g(f(x))=(f(x))^{2}+1 \\
g(f(x))=(x-3)^{2}+1 \\
g(f(x))=x^{2}-6 x+9+1 \\
g(f(x))=x^{2}-6 x+10
\end{array}
$$

$$
\boldsymbol{D}_{g \circ f}=(-\infty, \infty)
$$

Function Operations and Composition of Functions
Sample Problem 2: Find each composite function. Determine the domain of each composite function.

$$
\text { c. } f(x)=\frac{2}{x-3} \quad g(x)=\frac{1}{x} \quad(f \circ g)(x)=? \quad D_{f \circ g}=\text { ? }
$$

Function Operations and Composition of Functions
Sample Problem 2: Find each composite function. Determine the domain of each composite function.

$$
\text { c. } f(x)=\frac{2}{x-3} \quad g(x)=\frac{1}{x} \quad(f \circ g)(x)=\text { ? }
$$

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x)) \\
& f(g(x))=\frac{2}{g(x)-3} \\
& f(g(x))=\frac{2}{\frac{1}{x}-3} \\
& f(g(x))=\frac{2 x}{1-3 x}
\end{aligned}
$$

$$
f(g(x))=\frac{2}{g(x)-3} \quad \frac{1}{x} \neq 0 \quad x \neq 0
$$

$$
f(g(x))=\frac{2}{\frac{1}{x}-3} \quad \frac{1}{x}-3 \neq 0 \quad x \neq \frac{1}{3}
$$

Function Operations and Composition of Functions
Sample Problem 2: Find each composite function. Determine the domain of each composite function.

$$
\begin{aligned}
& \text { c. } \begin{aligned}
& f(x)=\frac{2}{x-3} \quad g(x)=\frac{1}{x} \quad D_{f \circ g}=? \\
& \\
& D_{g}=(-\infty, 0) \cup(0, \infty) \\
& D_{f \circ g}=(-\infty, 0) \cup\left(0, \frac{1}{3}\right) \cup\left(\frac{1}{3}, \infty\right)
\end{aligned}
\end{aligned}
$$

Function Operations and Composition of Functions
Sample Problem 2: Find each composite function. Determine the domain of each composite function.

$$
\text { d. } f(x)=\frac{2}{x} \quad g(x)=\frac{1}{x} \quad(g \circ f)(x)=? \quad D_{g \circ f}=?
$$

Function Operations and Composition of Functions
Sample Problem 2: Find each composite function. Determine the domain of each composite function.

$$
\begin{aligned}
& \text { d. } f(x)=\frac{2}{x} \quad g(x)=\frac{1}{x} \quad(g \circ f)(x)=\text { ? } \\
& (g \circ f)(x)=g(f(x)) \\
& g(f(x))=\frac{1}{f(x)} \quad \frac{2}{x} \neq 0 \quad x \neq 0 \\
& g(f(x))=\frac{\frac{1}{2}}{x} \\
& g(f(x))=\frac{x}{2}
\end{aligned}
$$

Function Operations and Composition of Functions
Sample Problem 2: Find each composite function. Determine the domain of each composite function.

$$
\text { d. } \begin{aligned}
f(x) & =\frac{2}{x} \quad g(x)=\frac{1}{x} \quad D_{g \circ f}=? \\
D_{g} & =(-\infty, 0) \cup(0, \infty) \\
D_{g \circ f} & =(-\infty, 0) \cup(0, \infty)
\end{aligned}
$$

Function Operations and Composition of Functions
Sample Problem 3: : Find and then evaluate each composite function.
a. $f(x)=\sqrt{x}$
$g(x)=x-2$
$(f \circ g)(6)=$?

Function Operations and Composition of Functions
Sample Problem 3: : Find and then evaluate each composite function.

$$
\text { a. } f(x)=\sqrt{x} \quad g(x)=x-2 \quad(f \circ g)(6)=\text { ? }
$$

$$
\begin{array}{cl}
(f \circ g)(x)=f(g(x)) & f(g(6))=\sqrt{6-2} \\
f(g(x))=\sqrt{g(x)} & f(g(6))=\sqrt{4} \\
f(g(x))=\sqrt{x-2} & f(g(6))=2
\end{array}
$$

Function Operations and Composition of Functions
Sample Problem 3: : Find and then evaluate each composite function. b. $f(x)=6 x-1 \quad g(x)=\frac{x+3}{2} \quad(g \circ f)(2)=$?

Function Operations and Composition of Functions
Sample Problem 3: : Find and then evaluate each composite function.
b. $f(x)=6 x-1 \quad g(x)=\frac{x+3}{2} \quad(g \circ f)(2)=$?
$(g \circ f)(x)=g(f(x))$
$g(f(x))=\frac{f(x)+3}{2}$
$g(f(2))=3 * 2+1$
$g(f(x))=\frac{(6 x-1)+3}{2}$
$g(f(2))=7$

$$
\begin{aligned}
& g(f(x))=\frac{6 x+2}{2}=\frac{2(3 x+1)}{2} \\
& g(f(x))=3 x+1
\end{aligned}
$$

Function Operations and Composition of Functions

Decomposition of Composite Functions

When you form a composite function, you "compose" two functions to form a new function. It is also possible to reverse this process. You can "decompose" a given function and express it as a composition of two functions. Although there is more than one way to do this, there is often a "natural" selection that comes to mind first.

Function Operations and Composition of Functions
Sample Problem 4: Express $\boldsymbol{h}(\boldsymbol{x})$ as a composition of two functions \boldsymbol{f} and $g(f \circ g)(x)$.
a. $h(x)=\left(x^{3}-3 x\right)^{2}$

Function Operations and Composition of Functions
Sample Problem 4: Express $\boldsymbol{h}(\boldsymbol{x})$ as a composition of two functions \boldsymbol{f} and $g(f \circ g)(x)$.
a. $h(x)=\left(x^{3}-3 x\right)^{2}$

$$
h(x)=(f \circ g)(x)=f(g(x))
$$

$$
f(g(x))=(g(x))^{2}=\left(x^{3}-3 x\right)^{2}
$$

$$
f(x)=x^{2} \quad g(x)=x^{3}-3 x
$$

Function Operations and Composition of Functions
Sample Problem 4: Express $\boldsymbol{h}(\boldsymbol{x})$ as a composition of two functions \boldsymbol{f} and $g(f \circ g)(x)$.
b. $h(x)=\frac{3}{3 x-5}$

Function Operations and Composition of Functions
Sample Problem 4: Express $\boldsymbol{h}(\boldsymbol{x})$ as a composition of two functions \boldsymbol{f} and $g(f \circ g)(x)$.
b. $h(x)=\frac{3}{3 x-5}$

$$
\begin{aligned}
& h(x)=(f \circ g)(x)=f(g(x)) \\
& f(g(x))=\frac{3}{g(x)-5}=\frac{3}{3 x-5} \\
& f(x)=\frac{3}{x-5} \quad g(x)=3 x
\end{aligned}
$$

