\qquad Date: \qquad

Function Operations and Composition of Functions Guided Notes

Function Operations

Let \boldsymbol{f} and \boldsymbol{g} be any two functions. You can add, subtract, multiply or divide $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ to form a new function.
The domain of new function consist of the \boldsymbol{x}-values that are in the domains of both $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$. When new function involves division, the domain does not include \boldsymbol{x}-values for which the denominator is equal to zero.

Operation	Definition
Addition	$(f+g)(x)=f(x)+g(x)$
Subtraction	$(f-g)(x)=f(x)-g(x)$
Multiplication	$(f * g)(x)=f(x) * g(x)$
Division	$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$ where $g(x) \neq 0$

Sample Problem 1: Find $(f+g)(x),(f-g)(x),(f * g)(x)$, and $\left(\frac{f}{g}\right)(x)$ for each $f(x)$ and $g(x)$. Determine the domain of each new function.
a. $f(x)=x^{2}+2 x-1$ $g(x)=x-5$
b. $\quad f(x)=x^{2}-81$
$g(x)=x+9$
\qquad Date: \qquad

Function Operations and Composition of Functions Guided Notes

Composition of Functions

The composition of function \boldsymbol{f} with function \boldsymbol{g} is defined by $(\boldsymbol{f} \circ \boldsymbol{g})(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{g}(\boldsymbol{x}))$
The domain of the composite function $\boldsymbol{f} \circ \boldsymbol{g}$ is the set of all such that:

1. \boldsymbol{x} is in the domain of \boldsymbol{g} and
2. $\boldsymbol{g}(\boldsymbol{x})$ is in the domain of \boldsymbol{f}.

Sample Problem 2: Find each composite function. Determine the domain of each composite function.
a. $\quad f(x)=2 x-3$
$g(x)=x+1$ $(f \circ g)(x)=? \quad D_{f \circ g}=?$
b. $\quad f(x)=x-3$
$g(x)=x^{2}+1$
$(g \circ f)(x)=$?
$D_{g \circ f}=$?
c.

$$
\begin{array}{ll}
f(x)=\frac{2}{x-3} & g(x)=\frac{1}{x} \\
(f \circ g)(x)=? & D_{f \circ g}=?
\end{array}
$$

d. $\quad f(x)=\frac{2}{x} \quad g(x)=\frac{1}{x}$
$(g \circ f)(x)=? \quad D_{g \circ f}=?$
\qquad Period: \qquad Date: \qquad

Function Operations and Composition of Functions Guided Notes

Sample Problem 3: Find and then evaluate each composite function.
$\begin{array}{ll}\text { a. } & f(x)=\sqrt{x} \quad g(x)=x-2 \\ & (f \circ g)(6)=?\end{array}$
b.
$f(x)=6 x-1 \quad g(x)=\frac{x+3}{2}$
$(g \circ f)(2)=?$

Decomposition of Composite Functions

When you form a composite function, you "compose" two functions to form a new function. It is also possible to reverse this process. You can "decompose" a given function and express it as a composition of two functions. Although there is more than one way to do this, there is often a "natural" selection that comes to mind first.

Sample Problem 4: Express $\boldsymbol{h}(\boldsymbol{x})$ as a composition of two functions \boldsymbol{f} and $\boldsymbol{g}(\boldsymbol{f} \circ \boldsymbol{g})(\boldsymbol{x})$.
a. $\quad h(x)=\left(x^{3}-3 x\right)^{2}$
b. $\quad h(x)=\frac{3}{3 x-5}$

