_____ Period: _____ Date: ____

Continuity, End Behavior, and Limits Guided Notes

The graph of a continuous function has no breaks, holes, or gaps. You can trace the graph of a continuous function without lifting your pencil.

One condition for a function f(x) to be continuous at x = c is that the function must approach a unique function value as x -values approach c from the left and right sides. The concept of approaching a value without necessarily ever reaching it is called a limit.

If the value of f(x) approaches a unique value L as x approaches c from each side, then the limit of f(x) as x approaches c is L. $\lim f(x) = L$

Functions that are not continuous are discontinuous. Graphs that are discontinuous can exhibit:

- Infinite discontinuity (A function has an infinite discontinuity at x = c if the function value increases or decreases indefinitely as x approaches c from the left and right)
- Jump discontinuity, (A function has a jump discontinuity at x = c if the limits of the function as x approaches c from the left and right exist but have two distinct values.
- Removable discontinuity, also called point discontinuity (function has a removable discontinuity if the function is continuous everywhere except for a hole at x = c.

Continuity Test

-40

-30

A function f(x) is continuous at x = c if it satisfies the following conditions.

- **1.** f(x) is defined at c. f(c) exists.
- **2.** f(x) approaches the same function value to the left and right of c.
- **3.** The function value that f(x) approaches from each side of c is f(c).

Sample Problem 1: Determine whether each function is continuous at the given x -values. Justify using the continuity test. If discontinuous, identify the type of discontinuity.

 $f(x) = 3x^2 + x - 7$ at x = 1a.

30

20

10

-10

-20

-30

10

30

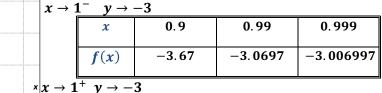
-10

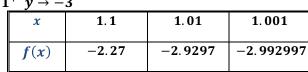
 $f(x) = 3x^2 + x - 7$ at x = 1 $f(1) = 3 * 1^2 + 1 - 7$

f(1) = -3

f(1) exists

 $x \rightarrow 1^-$

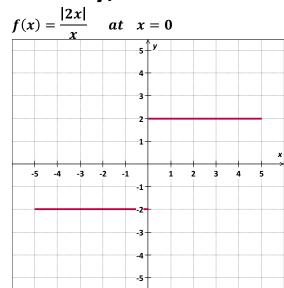




f(1) = -3 and $y \rightarrow -3$ from both side of x = 1 $\lim_{x \to 0} 3x^2 + x - 7 = f(1)$

 $f(x) = 3x^2 + x - 7$ is continuous at x = 1

Continuity, End Behavior, and Limits Guided Notes



$$f(x) = \frac{|2x|}{x} \quad at \quad x = 0$$

$$f(0) = \frac{x}{|2 \cdot 0|} = \frac{0}{0}$$

The function is undefined at x = 0

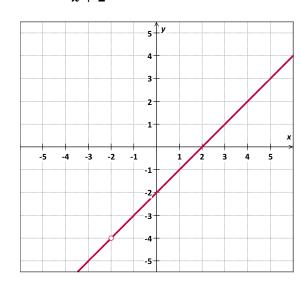
x	-0.1	-0.01	-0.001
f(x)	-2	-2	-2

_	γ U γ			
	x	0.1	0.01	0.001
	f(x)	2	2	2

 $f(x) = \frac{|2x|}{x}$ has jump discontinuity at x = 0

since y values are 2 and -2 on opposite sides of x = 0

c. $f(x) = \frac{x^2 - 4}{x + 2}$ at x = -2



$$f(x) = \frac{x^2 - 4}{x + 2} \quad at \quad x = -2$$

$$f(-2) = \frac{(-2)^2 - 4}{-2 + 2} = \frac{0}{0}$$

f(x) is undefined in x = -2

 $f(x) = \frac{x^2 - 4}{x + 2} \text{ is discontinuous at } x = -2$ $x \to -2^{-} \quad y \to -4$

x	-2.1	-2.01	-2.001
f(x)	-4.1	-4.01	-4.001

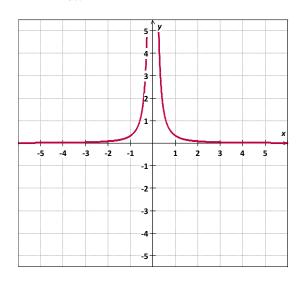
 $x \rightarrow -2^+ \ v \rightarrow -4$

<u> </u>	_		
x	-1.9	-1.99	-1.999
f(x)	-3.9	-3.99	-3.999

 $f(x) = \frac{x^2 - 4}{x + 2}$ has point discontinuity at x = -2since y value is – 4 on opposite sides of x = -2

Continuity, End Behavior, and Limits Guided Notes

$$f(x) = \frac{1}{3x^2} \quad at \quad x = 0$$



$$f(x) = \frac{1}{3x^2} \quad at \quad x = 0$$

$$f(0) = \frac{1}{3 * 0^2} = \infty$$

$$f(0)=\frac{1}{3*0^2}=\ \alpha$$

f(x) is undefined in x = 0

$$f(x) = \frac{1}{3x^2}$$
 is discontinuous at $x = 0$

$$x \to 0^ y \to +\infty$$

х	-0.1	-0.01	-0.001
f(x)	33.33	3,333.33	333, 333. 33

$$x \to 0^+ y \to +\infty$$

v	$y \rightarrow +\infty$	3		
	x	0.1	0.01	0.001
	f(x)	33.33	3, 333. 33	333, 333. 33

$$f(x) = \frac{1}{3x^2} \text{ has infinity discontinuity at } x = 0 \text{ since}$$

$$y \text{ value is } + \infty \text{ when } x \to 0$$

Intermediate Value Theorem

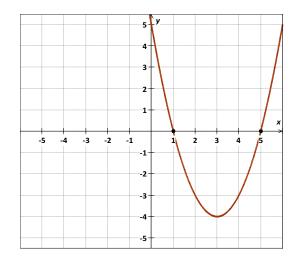
If f(x) is a continuous function and a < b and there is a value n such that n is between f(a) and f(b), then there is a number c, such that a < c < b and f(c) = n

The Location Principle

If f(x) is a continuous function and f(a) and f(b) have opposite signs, then there exists at least one value c, such that a < c < b and f(c) = 0. That is, there is a zero between a and b.

Sample Problem 2: Determine between which consecutive integers the real zeros of function are located on the given interval.

a.
$$f(x) = (x-3)^2 - 4$$
 [0,6]



x	0	1	2	3	4	5	6
y	5	0	-3	-4	-3	0	5

- f(0) is positive and f(2) is negative,
- f(x) change sign in $0 \le x \le 2$
- f(4) is negative and f(6) is positive
- f(x) change sign in $4 \le x \le 6$
- f(x) has zeros in intervals:

$$0 \le x \le 2 \quad and \quad 4 \le x \le 6$$

Continuity, End Behavior, and Limits Guided Notes

End Behavior

The end behavior of a function describes what the y-values do as |x| becomes greater and greater.

When x becomes greater and greater, we say that x approaches infinity, and we write $x \to +\infty$.

When x becomes more and more negative, we say that x approaches negative infinity, and we write $x \to -\infty$.

The same notation can also be used with y or f(x) and with real numbers instead of infinity.

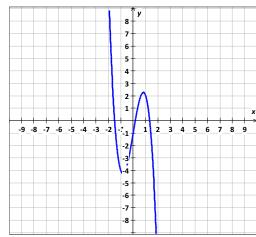
Left - End Behavior (as x becomes more and more negative): $\lim_{x \to -\infty} f(x)$

Right - End Behavior (as x becomes more and more positive): $\lim_{x \to +\infty} f(x)$

The f(x) values may approach negative infinity, positive infinity, or a specific value.

Sample Problem 3: Use the graph of each function to describe its end behavior. Support the conjecture numerically.

a.
$$f(x) = -3x^3 + 6x - 1$$



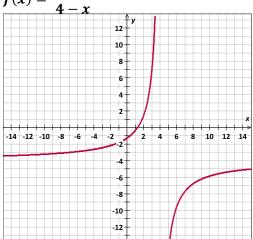
From the graph, it appears that:

$$f(x) \to \infty$$
 as $x \to -\infty$ and $f(x) \to -\infty$ as $x \to \infty$

The table supports this conjecture.

x	-10^{4}	-10^{3}	0	10 ³	10 ⁴
y	3 * 10 ¹²	3 * 10 ⁹	-1	-3 * 10 ⁹	-3 * 10 ¹²

 $f(x) = \frac{4x-5}{4-x}$



From the graph, it appears that:

$$f(x) o -4$$
 as $x o -\infty$ and $f(x) o -4$ as $x o \infty$

The table supports this conjecture.

x	-10^{4}	-10^{3}	0	10 ³	10 ⁴
y	-3.9989	-3.9890	-1.25	-4.001	-4.0011

Name: _____ Period: _____ Date: _____

Continuity, End Behavior, and Limits Guided Notes

Increasing, Decreasing, and Constant Functions

A function f is increasing on an interval I if and only if for every a and b contained in I, a0 < a0 , whenever a0 .

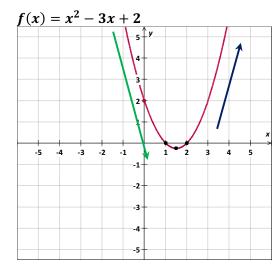
A function f is decreasing on an interval I if and only if for every a and b contained in I, f(a) > f(b) whenever a < b.

A function f remains constant on an interval I if and only if for every a and b contained in I, f(a) = f(b) whenever a < b.

Points in the domain of a function where the function changes from increasing to decreasing or from decreasing to increasing are called **critical points**.

Sample Problem 4: Determine the interval(s) on which the function is increasing and the interval(s) on which the function is decreasing.

a.



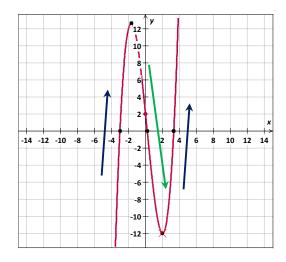
From the graph, it appears that:

A function
$$x^2 - 3x + 2$$
 is decreasing for $x < 1.5$
A function $x^2 - 3x + 2$ is increasing for $x > 1.5$

The table supports this conjecture.

x	-1	0	1	1.5	2	3
y	6	2	0	-0.25	-5.5	2

b. $f(x) = x^3 - \frac{1}{2}x^2 - 10x + 2$



From the graph, it appears that:

A function
$$x^3 - \frac{1}{2}x^2 - 10x + 2$$
 is increasing:

$$x < -1.66$$
 and $x > 2$

A function
$$x^3 - \frac{1}{2}x^2 - 10x + 2$$
 is decreasing:

$$-1.66 < x < 2$$

The table supports this conjecture.

x	-2	-1.66	-1	0	2	3
y	12	12.65	10.5	2	-12	-5.5