for PreCalculusCoach.com

Analyzing Graphs of Functions and Relations

Unit 1 Lesson 2

Analyzing Graphs of Functions and Relations

Students will be able to:

Analyze graphs of functions and relations
(x and y - intercepts, zeros, symmetry, even and odd functions)
Key Vocabulary:
Graph of a function,
An intercept,
A zero of a function,

> Symmetry

Analyzing Graphs of Functions and Relations
The graph of a function \boldsymbol{f} is the set of ordered pairs $(\boldsymbol{x}, \boldsymbol{f}(\boldsymbol{x}))$, in the coordinate plane, such that \boldsymbol{x} is the domain of \boldsymbol{f}.

- \boldsymbol{x} - the directed distance from the \boldsymbol{y}-axis
- $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ - the directed distance from the \boldsymbol{x}-axis

You can use the graph to estimate function values.

Analyzing Graphs of Functions and Relations
Sample Problem 1: Use a graph of each function to estimate the indicated function values. Then find the values algebraically.
a. $f(x)=\left|(x-3)^{2}-2\right|$
$f(3)=$?
$f(4)=$?

Analyzing Graphs of Functions and Relations
Sample Problem 1: Use a graph of each function to estimate the indicated function values. Then find the values algebraically.
a. $f(x)=\left|(x-3)^{2}-2\right|$

Graphically
$f(3)=2$
$f(4)=1$

Analyzing Graphs of Functions and Relations
Sample Problem 1: Use a graph of each function to estimate the indicated function values. Then find the values algebraically.
a. $f(x)=\left|(x-3)^{2}-2\right|$

Algebraically

$$
\begin{aligned}
& f(3)=\left|(3-3)^{2}-2\right|=|0-2|=2 \\
& f(4)=\left|(4-3)^{2}-2\right|=|1-2|=|-1|=1
\end{aligned}
$$

Analyzing Graphs of Functions and Relations
Sample Problem 1: Use a graph of each function to estimate the indicated function values. Then find the values algebraically.
b. $f(x)=x^{2}+4 x+4$
$f(3)=? \quad f(4)=$?

Analyzing Graphs of Functions and Relations
Sample Problem 1: Use a graph of each function to estimate the indicated function values. Then find the values algebraically.
b. $f(x)=x^{2}+4 x+4$

Graphically

$$
f(0)=4
$$

$$
f(-2)=0
$$

$$
f(-4)=4
$$

Analyzing Graphs of Functions and Relations
Sample Problem 1: Use a graph of each function to estimate the indicated function values. Then find the values algebraically.
b. $f(x)=x^{2}+4 x+4$

Algebraically

$$
\begin{aligned}
& f(0)=0^{2}+4 * 0+4=4 \\
& f(-2)=(-2)^{2}+4(-2)+4=4-8+4=0 \\
& f(-4)=(-4)^{2}+4(-4)+4=16-16+4=4
\end{aligned}
$$

Analyzing Graphs of Functions and Relations

Identifying Intercepts from a Functions Graph

A point where the graph intersects or meets the \boldsymbol{x} or y axis is called an intercept.

An \boldsymbol{x}-intercept occurs where $\boldsymbol{y}=\mathbf{0}$.
A \boldsymbol{y}-intercept occurs where $\boldsymbol{x}=\mathbf{0}$.

Analyzing Graphs of Functions and Relations
Sample Problem 2: Use the graph of each function to approximate its y-intercept. Then find the y-intercept algebraically.
a. $g(x)=|x-4|$

Analyzing Graphs of Functions and Relations
Sample Problem 2: Use the graph of each function to approximate its y-intercept. Then find the y-intercept algebraically.
a. $g(x)=|x-4|$

Graphically

$$
\begin{aligned}
& g(x)=|x-4| \\
& y-\text { intercept }=4
\end{aligned}
$$

Analyzing Graphs of Functions and Relations
Sample Problem 2: Use the graph of each function to approximate its y-intercept. Then find the y-intercept algebraically.
a. $\quad g(x)=|x-4|$

$$
\begin{aligned}
& \text { Algebraically } \\
& y \text {-intercept occurs where } x=0 \\
& g(0)=|0-4|=|-4| \\
& g(0)=4 \\
& y \text {-intercept }=4
\end{aligned}
$$

Analyzing Graphs of Functions and Relations
Sample Problem 2: Use the graph of each function to approximate its y-intercept. Then find the y-intercept algebraically.
b. $f(x)=x^{2}+3 x+4$

Analyzing Graphs of Functions and Relations
Sample Problem 2: Use the graph of each function to approximate its y-intercept. Then find the y-intercept algebraically.
b. $f(x)=x^{2}+3 x+4$

Graphically

$$
f(x)=x^{2}+3 x+4
$$

$$
y \text {-intercept }=4
$$

Analyzing Graphs of Functions and Relations
Sample Problem 2: Use the graph of each function to approximate its y-intercept. Then find the y-intercept algebraically.
b. $f(x)=x^{2}+3 x+4$

$$
\begin{aligned}
& \text { Algebraically } \\
& y \text {-intercept occurs where } x=0 \\
& f(0)=0^{2}+3 * 0+4 \\
& f(0)=4 \\
& y \text {-intercept }=4
\end{aligned}
$$

Analyzing Graphs of Functions and Relations

Zeros of a Function

- The zeros of function $\boldsymbol{f}(\boldsymbol{x})$ are \boldsymbol{x}-values for which $\boldsymbol{f}(\boldsymbol{x})=\mathbf{0}$
- If the graph of a function of \boldsymbol{x} has an \boldsymbol{x}-intercept at $(\boldsymbol{x}, \mathbf{0})$ then \boldsymbol{x} is a zero of the function.
- To find the zeros of a function, set the function equal to zero and solve for the independent variable.

Analyzing Graphs of Functions and Relations
Sample Problem 3: Use the graph of each function to approximate its zeros. Then find the zeros of each function algebraically.
a. $f(x)=-x^{2}-2 x \quad$ Zeros $=$?

Analyzing Graphs of Functions and Relations
Sample Problem 3: Use the graph of each function to approximate its zeros. Then find the zeros of each function algebraically.
a. $f(x)=-x^{2}-2 x \quad$ Zeros $=$?

Graphically
$f(x)=-x^{2}-2 x$
x - intercepts -2 and 0

Analyzing Graphs of Functions and Relations
Sample Problem 3: Use the graph of each function to approximate its zeros. Then find the zeros of each function algebraically.
a. $f(x)=-x^{2}-2 x \quad$ Zeros $=$?

Algebraically
$f(x)=0$
$-x^{2}-2 x=0$
$-x(x+2)=0$
$x=0 \quad$ or $\quad x=-2$
The zeros of f are 0 and - 2

Analyzing Graphs of Functions and Relations
Sample Problem 3: Use the graph of each function to approximate its zeros. Then find the zeros of each function algebraically.

$$
\text { b. } f(x)=x^{3}+3 \quad \text { Zeros }=\text { ? }
$$

Analyzing Graphs of Functions and Relations
Sample Problem 3: Use the graph of each function to approximate its zeros. Then find the zeros of each function algebraically.

$$
\text { b. } f(x)=x^{3}+3 \quad \text { Zeros }=\text { ? }
$$

Analyzing Graphs of Functions and Relations
Sample Problem 3: Use the graph of each function to approximate its zeros. Then find the zeros of each function algebraically. b. $f(x)=x^{3}+3 \quad$ Zeros $=$?

Algebraically

$$
\begin{aligned}
& f(x)=0 \\
& x^{3}+3=0 \\
& x^{3}=-3 \\
& x=\sqrt[3]{-3}
\end{aligned}
$$

The zero of f is $\sqrt[3]{-3} \approx-1.44$

Analyzing Graphs of Functions and Relations

Symmetry of Graphs

There are two possible types of symmetry that graphs of functions can have.

1. Line symmetry - graphs can be folded along a line so that the two halves match exactly.
2. Point symmetry - graphs can be rotated 180° with respect to a point and appear unchanged.

Analyzing Graphs of Functions and Relations

 Tests for Symmetry| Graphical Test | Algebraic Test |
| :--- | :--- |
| The graph of a relation is symmetric with
 respect to the \boldsymbol{x}-axis if and only if for every
 point $(\boldsymbol{x}, \boldsymbol{y})$, on the graph, the point $(\boldsymbol{x},-\boldsymbol{y})$, is
 also on the graph. | Replacing \boldsymbol{y} with - \boldsymbol{y} produces an equivalent
 equation. |
| The graph of a relation is symmetric with
 respect to the \boldsymbol{y}-axis if and only if for every
 point $(\boldsymbol{x}, \boldsymbol{y})$ on the graph, the point $(-\boldsymbol{x}, \boldsymbol{y})$ is also
 on the graph. | Replacing \boldsymbol{x} with $-\boldsymbol{x}$ produces an equivalent
 equation. |
| The graph of a relation is symmetric with
 respect to the origin if and only if for every point
 $\boldsymbol{x}, \boldsymbol{y})$ on the graph, the point $(-\boldsymbol{x},-\boldsymbol{y})$ is also on
 the graph. | Replacing \boldsymbol{x} with - \boldsymbol{x} and \boldsymbol{y} with - \boldsymbol{y} produces |

Analyzing Graphs of Functions and Relations

 Sample Problem 4: Use the graph of each equation to test for symmetry with respect to the \boldsymbol{x}-axis, \boldsymbol{y}-axis, and the origin. Support the answer numerically. Then confirm algebraically.a. $y=\frac{2}{x}$

for PreCalculusCoach.com

Analyzing Graphs of Functions and Relations Sample Problem 4: Use the graph of each equation to test for symmetry with respect to the \boldsymbol{x}-axis, \boldsymbol{y}-axis, and the origin. Support the answer numerically. Then confirm algebraically.
a. $y=\frac{2}{x}$

Graphically

The graph appears to be symmetric with respect to the origin because for every point $(\boldsymbol{x}, \boldsymbol{y})$ on the graph, there is a point (- $\boldsymbol{x},-\boldsymbol{y})$.

fo PreCalculusCoach.com

Analyzing Graphs of Functions and Relations
Sample Problem 4: Use the graph of each equation to test for symmetry with respect to the \boldsymbol{x}-axis, \boldsymbol{y}-axis, and the origin. Support the answer numerically. Then confirm algebraically.
a. $y=\frac{2}{x}$

Support Numerically

There is a table of values to support this conjecture.

x	-4	-2	-1	1	2	4
y	$-\frac{1}{2}$	-1	-2	2	1	$\frac{1}{2}$
(x, y)	$\left(-4,-\frac{1}{2}\right)$	$(-2,-1)$	$(-1,-2)$	$(1,2)$	$(2,1)$	$\left(4, \frac{1}{2}\right)$

Analyzing Graphs of Functions and Relations
Sample Problem 4: Use the graph of each equation to test for symmetry with respect to the \boldsymbol{x}-axis, \boldsymbol{y}-axis, and the origin. Support the answer numerically. Then confirm algebraically.
a. $y=\frac{2}{x}$

Algebraically

Because $-y=\frac{2}{-x}$ is equivalent to $y=\frac{2}{x}$,
the graph is symmetric with respect to the origin.

Analyzing Graphs of Functions and Relations

 Sample Problem 4: Use the graph of each equation to test for symmetry with respect to the \boldsymbol{x}-axis, \boldsymbol{y}-axis, and the origin. Support the answer numerically. Then confirm algebraically.b. $\quad 4 x+y^{2}=4$

f_{0} PreCalculusCoach.com

Analyzing Graphs of Functions and Relations Sample Problem 4: Use the graph of each equation to test for symmetry with respect to the \boldsymbol{x}-axis, \boldsymbol{y}-axis, and the origin. Support the answer numerically. Then confirm algebraically.
b. $\quad 4 x+y^{2}=4$

Graphically

The graph appears to be symmetric with respect to the x -axis because for every point $(\boldsymbol{x}, \boldsymbol{y})$ on the graph, there is a point $(x,-y)$.

fov PreCalculusCoach.com

Analyzing Graphs of Functions and Relations
Sample Problem 4: Use the graph of each equation to test for symmetry with respect to the \boldsymbol{x}-axis, \boldsymbol{y}-axis, and the origin. Support the answer numerically. Then confirm algebraically.
b. $4 x+y^{2}=4$

Support Numerically

There is a table of values to support this conjecture.

x	-2	-1	0	1
y	$\pm 2 \sqrt{3}$	$\pm 2 \sqrt{2}$	± 2	0
(x, y)	$(-2, \pm 2 \sqrt{3})$	$(-2, \pm 2 \sqrt{2})$	$(-1, \pm 2)$	$(1,0)$

Analyzing Graphs of Functions and Relations
Sample Problem 4: Use the graph of each equation to test for symmetry with respect to the \boldsymbol{x}-axis, \boldsymbol{y}-axis, and the origin. Support the answer numerically. Then confirm algebraically.
b. $4 x+y^{2}=4$

Algebraically

$$
\begin{aligned}
& 4 x+(-y)^{2}=4 \\
& 4 x+y^{2}=4
\end{aligned}
$$

Because $\mathbf{4 x}+(-\boldsymbol{y})^{2}=\mathbf{4}$ is equivalent to $\mathbf{4 x}+\boldsymbol{y}^{2}=\mathbf{4}$, the graph is symmetric with respect to the x-axis.

Analyzing Graphs of Functions and Relations

Identify Even and Odd Functions

If $f(-\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})$, then the function is even, and symmetric to the y-axis.

If $f(-\boldsymbol{x})=-\boldsymbol{f}(\boldsymbol{x})$, then the function is odd, and symmetric to the origin.

Analyzing Graphs of Functions and Relations

Sample Problem 5: Determine whether the following are even, odd,

 or neither.a. $f(x)=x^{4}+4$

Analyzing Graphs of Functions and Relations
Sample Problem 5: Determine whether the following are even, odd, or neither.
a. $\quad f(x)=x^{4}+4$

$$
\begin{aligned}
& f(-x)=(-x)^{4}+4 \\
& f(-x)=x^{4}+4
\end{aligned}
$$

$$
\boldsymbol{f}(-\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x}) \quad \text { The function is even. }
$$

Analyzing Graphs of Functions and Relations

Sample Problem 5: Determine whether the following are even, odd,

 or neither.b. $\quad g(x)=9 x^{5}-x^{3}$

Analyzing Graphs of Functions and Relations
Sample Problem 5: Determine whether the following are even, odd, or neither.
b. $\quad g(x)=9 x^{5}-x^{3}$

$$
g(-x)=9(-x)^{5}-(-x)^{3}
$$

$$
g(-x)=-9 x^{5}+x^{3}
$$

$$
g(-x)=-\left(9 x^{5}-x^{3}\right)
$$

$\boldsymbol{g}(-\boldsymbol{x})=-\boldsymbol{g}(\boldsymbol{x}) \quad$ The function is odd.

Analyzing Graphs of Functions and Relations

Sample Problem 5: Determine whether the following are even, odd,

 or neither.c. $\quad h(t)=t^{2}+t$

Analyzing Graphs of Functions and Relations
Sample Problem 5: Determine whether the following are even, odd, or neither.
c. $\quad h(t)=t^{2}+t$

$$
h(-t)=(-t)^{2}+(-t)
$$

$$
h(-t)=t^{2}-t
$$

$$
h(-t) \neq h(t) \quad h(-t) \neq-h(t)
$$

The function is neither.

