PreCalculusCoach.com

Analyzing Graphs of Functions and Relations Unit 1 Lesson 2

Students will be able to:

Analyze graphs of functions and relations

(x and y – intercepts, zeros, symmetry, even and odd functions)

Key Vocabulary:

Graph of a function,

An intercept,

A zero of a function,

Symmetry

🜆 PreCalculusCoach.com

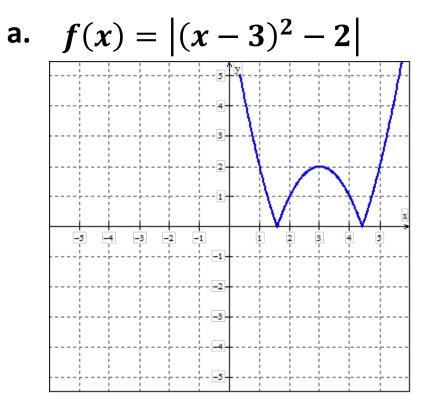
The graph of a function f is the set of ordered pairs(x, f(x)), in the coordinate plane, such that x is the domain of f.

- x the directed distance from the y -axis
- y = f(x) the directed distance from the x -axis

You can use the graph to estimate function values.

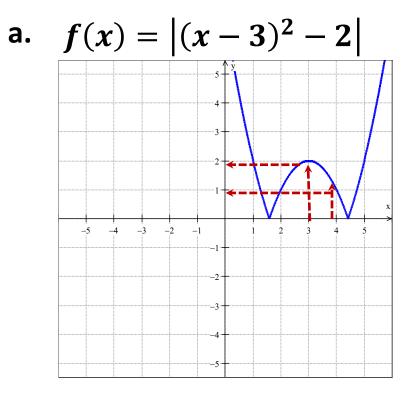
🜆 PreCalculusCoach.com

Sample Problem 1: Use a graph of each function to estimate the indicated function values. Then find the values algebraically.



$$f(3) =? \qquad f(4) =?$$

Sample Problem 1: Use a graph of each function to estimate the indicated function values. Then find the values algebraically.



Graphically

$$f(3) = 2$$

 $f(4) = 1$

Sample Problem 1: Use a graph of each function to estimate the indicated function values. Then find the values algebraically.

a.
$$f(x) = |(x-3)^2 - 2|$$

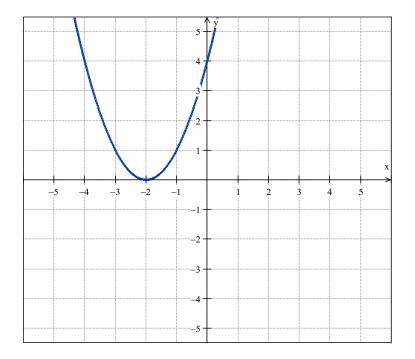
Algebraically

$$f(3) = |(3-3)^2 - 2| = |0-2| = 2$$

$$f(4) = |(4-3)^2 - 2| = |1-2| = |-1| = 1$$

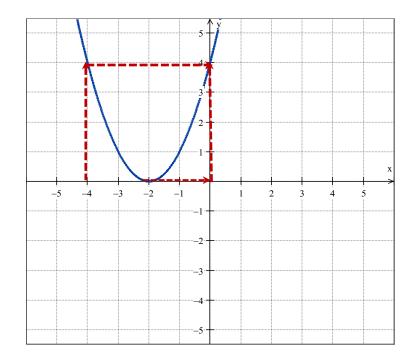
Sample Problem 1: Use a graph of each function to estimate the indicated function values. Then find the values algebraically.

b.
$$f(x) = x^2 + 4x + 4$$
 $f(3) =?$ $f(4) =?$



Sample Problem 1: Use a graph of each function to estimate the indicated function values. Then find the values algebraically.

b.
$$f(x) = x^2 + 4x + 4$$



$$f(0) = 4$$

 $f(-2) = 0$
 $f(-4) = 4$

Sample Problem 1: Use a graph of each function to estimate the indicated function values. Then find the values algebraically.

b.
$$f(x) = x^2 + 4x + 4$$

$$f(0) = 0^{2} + 4 * 0 + 4 = 4$$

$$f(-2) = (-2)^{2} + 4(-2) + 4 = 4 - 8 + 4 = 0$$

$$f(-4) = (-4)^{2} + 4(-4) + 4 = 16 - 16 + 4 = 4$$

PreCalculusCoach.com

Identifying Intercepts from a Functions Graph

A point where the graph intersects or meets the *x* or *y* axis is called **an intercept**.

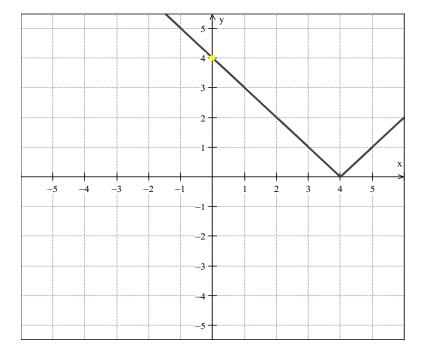
An x -intercept occurs where y = 0.

A *y* -intercept occurs where x = 0.

Sample Problem 2: Use the graph of each function to approximate its

y –intercept. Then find the y –intercept algebraically.

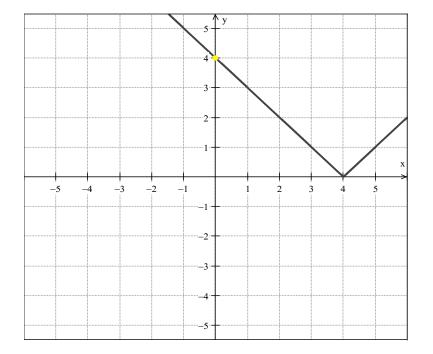
a.
$$g(x) = |x - 4|$$



Sample Problem 2: Use the graph of each function to approximate its

y --intercept. Then find the y --intercept algebraically.

a.
$$g(x) = |x-4|$$



Graphically

$$g(x) = |x - 4|$$

y-intercept = 4

Sample Problem 2: Use the graph of each function to approximate its

y -intercept. Then find the y -intercept algebraically.

a.
$$g(x) = |x - 4|$$

Algebraically

y -intercept occurs where
$$x = 0$$

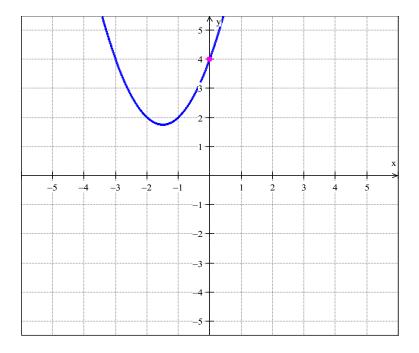
 $g(0) = |0 - 4| = |-4|$
 $g(0) = 4$

y – intercept = 4

Sample Problem 2: Use the graph of each function to approximate its

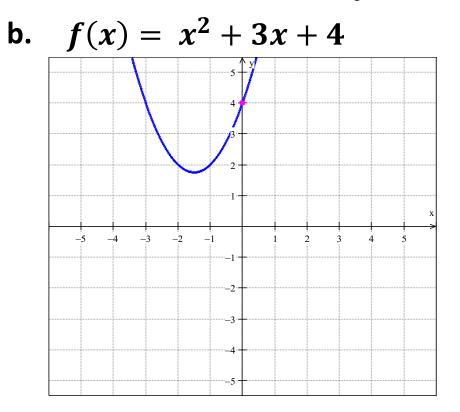
y –intercept. Then find the y –intercept algebraically.

b.
$$f(x) = x^2 + 3x + 4$$



Sample Problem 2: Use the graph of each function to approximate its

y –intercept. Then find the y –intercept algebraically.



Graphically

$$f(x) = x^2 + 3x + 4$$

$$y$$
 – intercept = 4

Sample Problem 2: Use the graph of each function to approximate its

y --intercept. Then find the y --intercept algebraically.

b.
$$f(x) = x^2 + 3x + 4$$

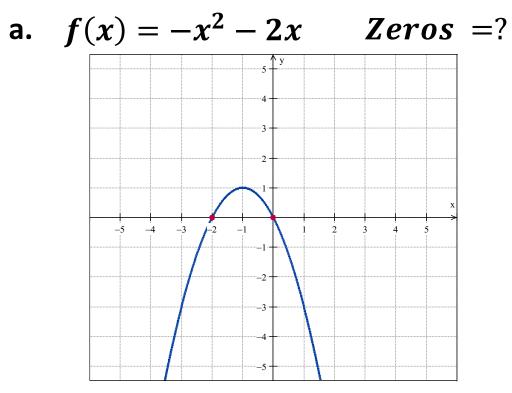
Algebraically y-intercept occurs where x = 0 $f(0) = 0^2 + 3 * 0 + 4$ f(0) = 4

y – intercept = 4

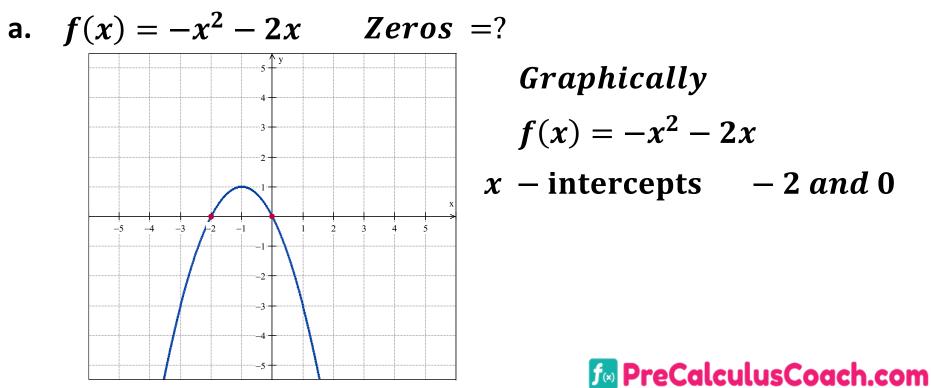
Zeros of a Function

- The zeros of function f(x) are x –values for which f(x) = 0
- If the graph of a function of x has an x -intercept
 at (x, 0) then x is a zero of the function.
- To find the zeros of a function, set the function equal to zero and solve for the independent variable.

Sample Problem 3: Use the graph of each function to approximate its zeros. Then find the zeros of each function algebraically.



Sample Problem 3: Use the graph of each function to approximate its zeros. Then find the zeros of each function algebraically.



Sample Problem 3: Use the graph of each function to approximate its zeros. Then find the zeros of each function algebraically.

a.
$$f(x) = -x^2 - 2x$$
 Zeros =?

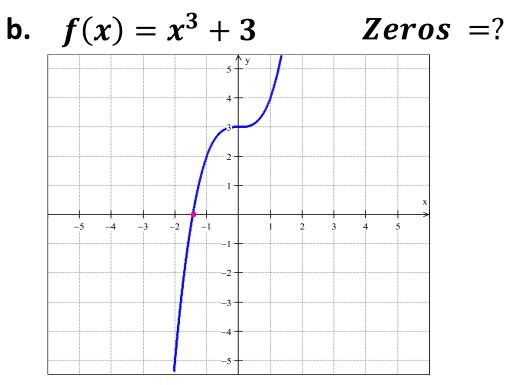
Algebraically

$$f(x) = 0$$

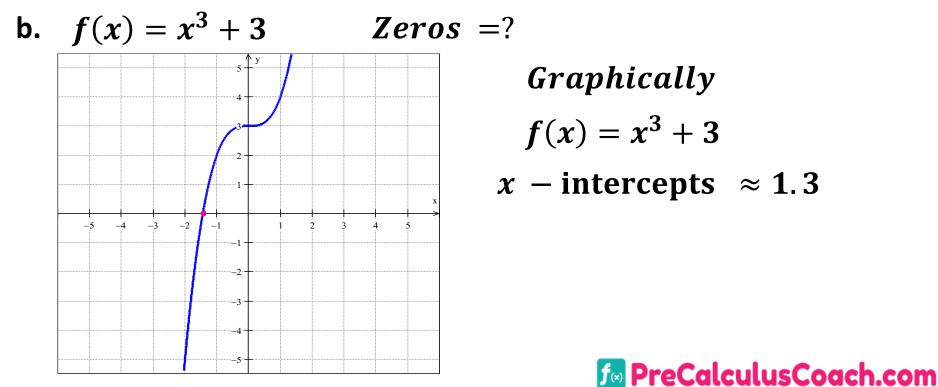
-x² - 2x = 0
-x(x + 2) = 0
x = 0 or x = -2

The zeros of f are 0 and -2

Sample Problem 3: Use the graph of each function to approximate its zeros. Then find the zeros of each function algebraically.



Sample Problem 3: Use the graph of each function to approximate its zeros. Then find the zeros of each function algebraically.



Sample Problem 3: Use the graph of each function to approximate its zeros. Then find the zeros of each function algebraically.

b.
$$f(x) = x^3 + 3$$
 Zeros =?

Algebraically

f(x) = 0 $x^{3} + 3 = 0$ $x^{3} = -3$ $x = \sqrt[3]{-3}$

The zero of f is $\sqrt[3]{-3} \approx -1.44$

Symmetry of Graphs

There are two possible types of symmetry that graphs of functions can have.

1. **Line symmetry** - graphs can be folded along a line so that the two halves match exactly.

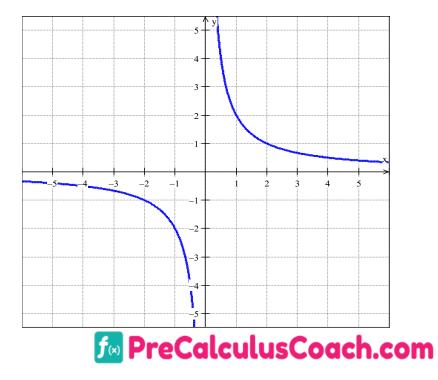
2. **Point symmetry** - graphs can be rotated 180° with respect to a point and appear unchanged.

Tests for Symmetry

Graphical Test	Algebraic Test				
The graph of a relation is symmetric with	Replacing y with - y produces an equivalent				
respect to the x -axis if and only if for every	equation.				
point (x, y) , on the graph, the point $(x, -y)$, is					
also on the graph.					
The graph of a relation is symmetric with	Replacing x with - x produces an equivalent				
respect to the $oldsymbol{y}$ -axis if and only if for every	equation.				
point (x, y) on the graph, the point $(-x, y)$ is also					
on the graph.					
The graph of a relation is symmetric with	Replacing x with - x and y with - y produces				
respect to the origin if and only if for every point	an equivalent equation.				
(x, y) on the graph, the point $(-x, -y)$ is also on					
the graph.					
🜆 PreCalculusCoach.c					

Analyzing Graphs of Functions and Relations Sample Problem 4: Use the graph of each equation to test for symmetry with respect to the *x* -axis, *y* -axis, and the origin. Support the answer numerically. Then confirm algebraically.

a.
$$y = \frac{z}{x}$$

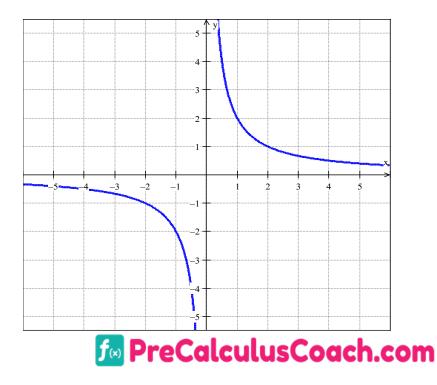


Analyzing Graphs of Functions and Relations Sample Problem 4: Use the graph of each equation to test for symmetry with respect to the x -axis, y -axis, and the origin. Support the answer numerically. Then confirm algebraically.

a.
$$y = \frac{z}{x}$$

Graphically

The graph appears to be symmetric with respect to the origin because for every point (x, y) on the graph, there is a point (-x, -y).



a. $y = \frac{z}{x}$

Sample Problem 4: Use the graph of each equation to test for symmetry with respect to the *x* -axis, *y* -axis, and the origin. Support the answer numerically. Then confirm algebraically.

There is a table of values to support this conjecture.

x	-4	-2	-1	1	2	4
у	$-\frac{1}{2}$	-1	-2	2	1	$\frac{1}{2}$
(<i>x</i> , <i>y</i>)	$(-4, -\frac{1}{2})$	(-2, -1)	(-1,-2)	(1, 2)	(2, 1)	$(4,\frac{1}{2})$

🜆 PreCalculusCoach.com

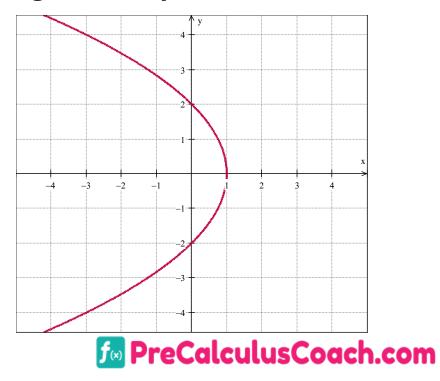
Sample Problem 4: Use the graph of each equation to test for symmetry with respect to the *x* -axis, *y* -axis, and the origin. Support the answer numerically. Then confirm algebraically.

a.
$$y = \frac{2}{x}$$

Because $-y = \frac{2}{-x}$ is equivalent to $y = \frac{2}{x}$,
the graph is symmetric with respect to the origin.

Analyzing Graphs of Functions and Relations Sample Problem 4: Use the graph of each equation to test for symmetry with respect to the x -axis, y -axis, and the origin. Support the answer numerically. Then confirm algebraically.

b.
$$4x + y^2 = 4$$

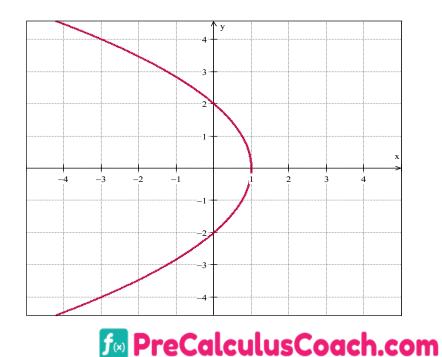


Analyzing Graphs of Functions and Relations Sample Problem 4: Use the graph of each equation to test for symmetry with respect to the x -axis, y -axis, and the origin. Support the answer numerically. Then confirm algebraically.

b.
$$4x + y^2 = 4$$

Graphically

The graph appears to be symmetric with respect to the x -axis because for every point (x, y) on the graph, there is a point (x, -y).



Sample Problem 4: Use the graph of each equation to test for symmetry with respect to the *x* -axis, *y* -axis, and the origin. Support the answer numerically. Then confirm algebraically.

b.
$$4x + y^2 = 4$$
 Support Numerically

There is a table of values to support this conjecture.

x	-2	-1	0	1
у	$\pm 2\sqrt{3}$	$\pm 2\sqrt{2}$	<u>+</u> 2	0
(<i>x</i> , <i>y</i>)	$\left(-2,\pm 2\sqrt{3}\right)$	$(-2,\pm 2\sqrt{2})$	(− 1 , ± 2)	(1,0)

PreCalculusCoach.com

Sample Problem 4: Use the graph of each equation to test for symmetry with respect to the *x* -axis, *y* -axis, and the origin. Support the answer numerically. Then confirm algebraically.

b. $4x + y^2 = 4$ $4x + (-y)^2 = 4$ $4x + y^2 = 4$

> Because $4x + (-y)^2 = 4$ is equivalent to $4x + y^2 = 4$, the graph is symmetric with respect to the x - axis.

🜆 PreCalculusCoach.com

Identify Even and Odd Functions

If f(-x) = f(x), then the function is even, and symmetric to the y-axis.

If f(-x) = -f(x), then the function is odd, and symmetric to the origin.

Sample Problem 5: Determine whether the following are even, odd,

or neither.

a.
$$f(x) = x^4 + 4$$

Sample Problem 5: Determine whether the following are even, odd,

or neither.

a. $f(x) = x^4 + 4$ $f(-x) = (-x)^4 + 4$ $f(-x) = x^4 + 4$

f(-x) = f(x) The function is even.

Sample Problem 5: Determine whether the following are even, odd,

or neither.

b.
$$g(x) = 9x^5 - x^3$$

Sample Problem 5: Determine whether the following are even, odd,

or neither.

b.
$$g(x) = 9x^5 - x^3$$

 $g(-x) = 9(-x)^5 - (-x)^3$
 $g(-x) = -9x^5 + x^3$
 $g(-x) = -(9x^5 - x^3)$

g(-x) = -g(x) The function is odd.

Sample Problem 5: Determine whether the following are even, odd,

or neither.

c.
$$h(t) = t^2 + t$$

Sample Problem 5: Determine whether the following are even, odd,

or neither.

c.
$$h(t) = t^{2} + t$$
$$h(-t) = (-t)^{2} + (-t)$$
$$h(-t) = t^{2} - t$$
$$h(-t) \neq h(t) \qquad h(-t) \neq -h(t)$$

The function is neither.

