The graph of a function f is the set of ordered pairs (x, f(x)), in the coordinate plane, such that x is the domain of f. x - the directed distance from the y -axis y = f(x) – the directed distance from the x -axis

You can use the graph to estimate function values.

Sample Problem 1: Use a graph of each function to estimate the indicated function values. Then find the values algebraically.

f(3) = 2Graphically f(4) = 1

Algebraically $f(3) = |(3-3)^2 - 2| = |0-2| = 2$ $f(4) = |(4-3)^2 - 2| = |1-2| = |-1| = 1$

f PreCalculusCoach.com

Copyright © PreCalculusCoach.com

Identifying Intercepts from a Functions Graph

A point where the graph intersects or meets the x or y axis is called **an intercept**.

An x-intercept occurs where y = 0. A y-intercept occurs where x = 0.

Sample Problem 2: Use the graph of each function to approximate its y –intercept. Then find the y –intercept algebraically.

a.
$$g(x) = |x-4|$$

b. $f(x) = x^2 + 3x + 4$

Graphically g(x) = |x-4|y – intercept = <mark>4</mark>

Algebraically y -intercept occurs where x = 0. g(0) = |0-4| = |-4|g(0) = 4y - intercept = 4

Graphically $f(x) = x^2 + 3x + 4$ y - intercept = 4

Algebraically y -intercept occurs where x = 0. $f(0) = 0^2 + 3 * 0 + 4$ f(0) = 4y - intercept = 4

Zeros of a Function

The zeros of function f(x) are x –values for which f(x) = 0

If the graph of a function of x has an x -intercept at (x, 0) then x is a zero of the function.

To find the zeros of a function, set the function equal to zero and solve for the independent variable.

f PreCalculusCoach.com

Sample Problem 3: Use the graph of each function to approximate its zeros. Then find the zeros of each function algebraically.

a.
$$f(x) = -x^2 - 2x$$

$$f(x) = -x^2 - 2x$$

$$f(x) = -x^2 - 2x$$

$$f(x) = x^3 + 3$$

$$f(x) = -x^2 - 2x$$

$$x - intercepts - 2 and 0$$

$$f(x) = 0$$

$$f(x) = 0$$

$$rx^2 - 2x = 0$$

$$rx(x + 2) = 0$$

$$x = 0$$

$$rx(x + 2) = 0$$

$$x = -2$$
The zeros of f are 0 and - 2

Symmetry of Graphs

There are two possible types of symmetry that graphs of functions can have.

1. Line symmetry - graphs can be folded along a line so that the two halves match exactly.

2. Point symmetry - graphs can be rotated 180° with respect to a point and appear unchanged.

3

Tests for Symmetry

Graphical Test	Algebraic Test
The graph of a relation is symmetric with respect to the x -axis if and only if for every point (x, y) , on the graph, the point $(x, -y)$, is also on the graph.	Replacing y with - y produces an equivalent equation.
The graph of a relation is symmetric with respect to the y -axis if and only if for every point (x, y) on the graph, the point $(-x, y)$ is also on the graph.	Replacing \boldsymbol{x} with - \boldsymbol{x} produces an equivalent equation.
The graph of a relation is symmetric with respect to the origin if and only if for every point (x, y) on the graph, the point $(-x, -y)$ is also on the graph.	Replacing x with - x and y with - y produces an equivalent equation.

Sample Problem 4: Use the graph of each equation to test for symmetry with respect to the x -axis, y -axis, and the origin. Support the answer numerically. Then confirm algebraically.

Graphically

The graph appears to be symmetric with respect to the origin because for every point (x, y) on the graph, there is a point (-x, -y).

Support Numerically

There is a table of values to support this conjecture.

x	-4	-2	-1	1	2	4
у	$-\frac{1}{2}$	-1	-2	2	1	$\frac{1}{2}$
(<i>x</i> , <i>y</i>)	$(-4, -\frac{1}{2})$	(-2,-1)	(-1, -2)	(1,2)	(2,1)	$(4, \frac{1}{2})$

Algebraically

 $-y=\frac{2}{-x}$ Because $-y = \frac{2}{-x}$ is equivalent to $y = \frac{2}{x}$, the graph is symmetric with respect to the series with respect to the origin.

f PreCalculusCoach.com

Copyright © PreCalculusCoach.com

Analyzing Graphs of Functions and Relations Guided Notes $4x + y^2 = 4$ b.

Graphically

The graph appears to be symmetric with respect to the *x* -axis because for every point (x, y) on the graph, there is a point (x, -y).

Support Numerically

There is a table of values to support this conjecture.

x	-2	-1	0	1
у	$\pm 2\sqrt{3}$	$\pm 2\sqrt{2}$	±2	0
(<i>x</i> , <i>y</i>)	$\left(-2,\pm 2\sqrt{3}\right)$	$(-2,\pm 2\sqrt{2})$	(− 1 , ± 2)	(1,0)

Algebraically

$$4x + (-y)^2 = 4 4x + y^2 = 4$$

Because

 $4x + (-y)^2 = 4$ is equivalent to $4x + y^2 = 4$, the graph is symmetric with respect to the x -axis.

Identify Even and Odd Functions

If f(-x) = f(x), then the function is even, and symmetric to the y-axis.

If f(-x) = -f(x), then the function is odd, and symmetric to the origin.

Sample Problem 5: Determine whether the following are even, odd, or neither.

a.
$$f(x) = x^4 + 4$$

 $f(x) = x^4 + 4$
 $f(-x) = (-x)^4 + 4$
 $f(-x) = x^4 + 4$
 $f(-x) = f(x)$ The function is even

f PreCalculusCoach.com

Analyzing Graphs of Functions and Relations Guided Notes b. $g(x) = 9x^5 - x^3$ $g(x) = 9x^5 - x^3$ $g(-x) = 9(-x)^5 - (-x)^3$ $g(-x) = -9x^5 + x^3$ $g(-x) = -(9x^5 - x^3)$ g(-x) = -g(x) The function is odd. c. $h(t) = t^2 + t$ $h(t) = t^2 + t$ $h(-t) = (-t)^2 + (-t)$ $h(-t) = t^2 - t$ $h(-t) \neq h(t)$ $h(-t) \neq -h(t)$ The function is neither.

f PreCalculusCoach.com