\qquad Date: \qquad

Analyzing Graphs of Functions and Relations Guided Notes

The graph of a function \boldsymbol{f} is the set of ordered pairs $(\boldsymbol{x}, \boldsymbol{f}(\boldsymbol{x}))$, in the coordinate plane, such that \boldsymbol{x} is the domain of \boldsymbol{f}. \boldsymbol{x} - the directed distance from the \boldsymbol{y}-axis $\quad \boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ - the directed distance from the \boldsymbol{x}-axis

You can use the graph to estimate function values.
Sample Problem 1: Use a graph of each function to estimate the indicated function values. Then find the values algebraically.
a. $\quad f(x)=\left|(x-3)^{2}-2\right|$
$f(3)=$? $\quad f(4)=$?

b. $\quad f(x)=x^{2}+4 x+4$

$$
f(0)=? \quad f(-2)=? \quad f(-4)=?
$$

$$
\begin{aligned}
& \text { Algebraically } \\
& f(0)=0^{2}+4 * 0+4=4 \\
& f(-2)=(-2)^{2}+4(-2)+4=4-8+4=0 \\
& f(-4)=(-4)^{2}+4(-4)+4=16-16+4=4
\end{aligned}
$$

$$
f(0)=4 \quad f(-2)=0 \quad f(-4)=4
$$

\qquad

Analyzing Graphs of Functions and Relations Guided Notes
 Identifying Intercepts from a Functions Graph

A point where the graph intersects or meets the \boldsymbol{x} or \boldsymbol{y} axis is called an intercept.
An \boldsymbol{x}-intercept occurs where $\boldsymbol{y}=\mathbf{0} . \quad$ A \boldsymbol{y}-intercept occurs where $\boldsymbol{x}=\mathbf{0}$.
Sample Problem 2: Use the graph of each function to approximate its \boldsymbol{y}-intercept. Then find the \boldsymbol{y}-intercept algebraically.
a. $\quad g(x)=|x-4|$

Graphically

$g(x)=|x-4| \quad y$-intercept $=4$

Algebraically

\boldsymbol{y}-intercept occurs where $\boldsymbol{x}=\mathbf{0}$.
$g(0)=|0-4|=|-4|$
$\boldsymbol{g}(0)=4$
y-intercept $=4$
b. $f(x)=x^{2}+3 x+4$

Graphically

$f(x)=x^{2}+3 x+4 \quad y$-intercept $=4$

Algebraically

\boldsymbol{y}-intercept occurs where $\boldsymbol{x}=\mathbf{0}$.
$f(0)=0^{2}+3 * 0+4$
$f(0)=4$
y-intercept $=4$

Zeros of a Function

The zeros of function $\boldsymbol{f}(\boldsymbol{x})$ are \boldsymbol{x}-values for which $\boldsymbol{f}(\boldsymbol{x})=\mathbf{0}$
If the graph of a function of \boldsymbol{x} has an \boldsymbol{x}-intercept at $(\boldsymbol{x}, \mathbf{0})$ then \boldsymbol{x} is a zero of the function.
To find the zeros of a function, set the function equal to zero and solve for the independent variable.
\qquad Date: \qquad

Analyzing Graphs of Functions and Relations Guided Notes

Sample Problem 3: Use the graph of each function to approximate its zeros. Then find the zeros of each function algebraically.
a. $\quad f(x)=-x^{2}-2 x$
$\quad \operatorname{Zeros}=?$
$f(x)=-x^{2}-2 x$

Graphically

$f(x)=-x^{2}-2 x$
x - intercepts -2 and 0

Algebraically

$$
\begin{aligned}
& f(x)=0 \\
& -x^{2}-2 x=0 \\
& -x(x+2)=0 \\
& x=0 \quad \text { or } \quad \begin{array}{l}
x+2=0 \\
\end{array} \quad x=-2
\end{aligned}
$$

The zeros of f are 0 and -2
b. $\quad f(x)=x^{3}+3$

Zeros $=$?
$f(x)=x^{3}+3$

Graphically

$f(x)=x^{3}+3$
$x-$ intercepts ≈ 1.3

Algebraically

$f(x)=0$
$x^{3}+3=0$
$x^{3}=-3$
$x=\sqrt[3]{-3}$
The zero of f is $\sqrt[3]{-3} \approx-1.44$

Symmetry of Graphs

There are two possible types of symmetry that graphs of functions can have.

1. Line symmetry - graphs can be folded along a line so that the two halves match exactly.
2. Point symmetry - graphs can be rotated 180° with respect to a point and appear unchanged.
\qquad Date: \qquad

Analyzing Graphs of Functions and Relations Guided Notes

Tests for Symmetry

Graphical Test	Algebraic Test
The graph of a relation is symmetric with respect to the \boldsymbol{x}-axis if and only if for every point $(\boldsymbol{x}, \boldsymbol{y})$, on the graph, the point $(\boldsymbol{x},-\boldsymbol{y})$, is also on the graph.	Replacing \boldsymbol{y} with - \boldsymbol{y} produces an equivalent equation.
The graph of a relation is symmetric with respect to the \boldsymbol{y}-axis if and only if for every point $(\boldsymbol{x}, \boldsymbol{y})$ on the graph, the point $(-\boldsymbol{x}, \boldsymbol{y})$ is also on the graph.	Replacing \boldsymbol{x} with $-\boldsymbol{x}$ produces an equivalent equation.
The graph of a relation is symmetric with respect to the origin if and only if for every point $(\boldsymbol{x}, \boldsymbol{y})$ on the graph, the point $(-\boldsymbol{x},-\boldsymbol{y})$ is also on the graph.	Replacing \boldsymbol{x} with $-\boldsymbol{x}$ and \boldsymbol{y} with $-\boldsymbol{y}$ produces an equivalent equation.

Sample Problem 4: Use the graph of each equation to test for symmetry with respect to the \boldsymbol{x}-axis, \boldsymbol{y}-axis, and the origin. Support the answer numerically. Then confirm algebraically.
a.

$$
y=\frac{2}{x}
$$

Graphically

The graph appears to be symmetric with respect to the origin because for every point (x, y) on the graph, there is a point $(-x,-y)$.

Support Numerically

There is a table of values to support this conjecture.

x	-4	-2	-1	1	2	$\mathbf{4}$
y	$-\frac{1}{2}$	-1	-2	2	1	$\frac{1}{2}$
(x, y)	$\left(-4,-\frac{1}{2}\right)$	$(-2,-1)$	$(-1,-2)$	$(1,2)$	$(2,1)$	$\left(4, \frac{1}{2}\right)$

Algebraically

$-y=\frac{2}{-x}$
Because $-y=\frac{2}{-x}$ is equivalent to $y=\frac{2}{x}$, the graph is symmetric with respect to the origin.
\qquad Date: \qquad

Analyzing Graphs of Functions and Relations Guided Notes

b. $\quad 4 x+y^{2}=4$

Graphically

The graph appears to be symmetric with respect to the \boldsymbol{x}-axis because for every point (x, y) on the graph, there is a point $(x,-y)$.

Support Numerically

There is a table of values to support this conjecture.

x	-2	-1	$\mathbf{0}$	$\mathbf{1}$
y	$\pm 2 \sqrt{3}$	$\pm 2 \sqrt{2}$	± 2	0
(x, y)	$(-2, \pm 2 \sqrt{3})$	$(-2, \pm 2 \sqrt{2})$	$(-1, \pm 2)$	$(1,0)$

Algebraically

$4 x+(-y)^{2}=4$
$4 x+y^{2}=4$

Because

$4 x+(-y)^{2}=4$ is equivalent to $4 x+y^{2}=4$, the graph is symmetric with respect to the \boldsymbol{x}-axis.

Identify Even and Odd Functions

If $\boldsymbol{f}(-\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})$, then the function is even, and symmetric to the y-axis.
If $\boldsymbol{f}(-\boldsymbol{x})=-\boldsymbol{f}(\boldsymbol{x})$, then the function is odd, and symmetric to the origin.

Sample Problem 5: Determine whether the following are even, odd, or neither.
a. $\quad f(x)=x^{4}+4$

$$
\begin{aligned}
& f(x)=x^{4}+4 \\
& f(-x)=(-x)^{4}+4 \\
& f(-x)=x^{4}+4 \\
& f(-x)=f(x) \quad \text { The function is even. }
\end{aligned}
$$

\qquad Date: \qquad
Analyzing Graphs of Functions and Relations Guided Notes
b. $g(x)=9 x^{5}-x^{3}$
$g(x)=9 x^{5}-x^{3}$
$g(-x)=9(-x)^{5}-(-x)^{3}$
$g(-x)=-9 x^{5}+x^{3}$
$g(-x)=-\left(9 x^{5}-x^{3}\right)$
$g(-x)=-g(x) \quad$ The function is odd.
c. $h(t)=t^{2}+t$

$$
\begin{aligned}
& h(t)=t^{2}+t \\
& h(-t)=(-t)^{2}+(-t) \\
& h(-t)=t^{2}-t \\
& h(-t) \neq h(t) \quad h(-t) \neq-h(t) \\
& \text { The function is neither. }
\end{aligned}
$$

