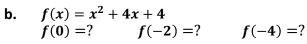
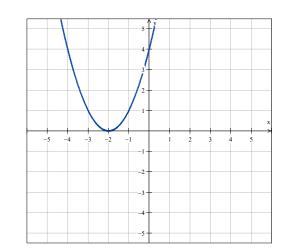

The graph of a function f is the set of ordered pairs (x, f(x)), in the coordinate plane, such that x is the domain of f. x - the directed distance from the y -axis y = f(x) – the directed distance from the x -axis

You can use the graph to estimate function values.


Sample Problem 1: Use a graph of each function to estimate the indicated function values. Then find the values algebraically.



Algebraically

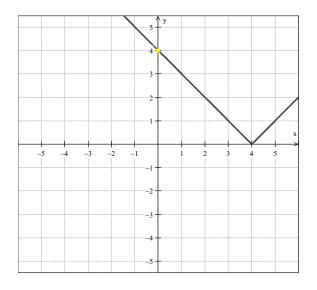
Graphically

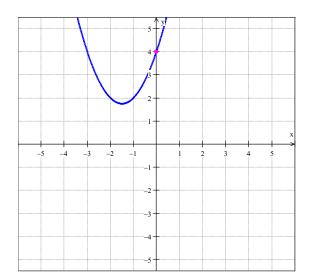
-2 _3 Graphically

Algebraically

Copyright © PreCalculusCoach.com

Identifying Intercepts from a Functions Graph


A point where the graph intersects or meets the x or y axis is called **an intercept**.


An x-intercept occurs where y = 0. A y-intercept occurs where x = 0.

Sample Problem 2: Use the graph of each function to approximate its y –intercept. Then find the y –intercept algebraically.

a.
$$g(x) = |x-4|$$

b. $f(x) = x^2 + 3x + 4$

Graphically

Algebraically

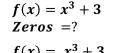
Graphically

Algebraically

Zeros of a Function

The zeros of function f(x) are x –values for which f(x) = 0

If the graph of a function of x has an x -intercept at (x, 0) then x is a zero of the function.


To find the zeros of a function, set the function equal to zero and solve for the independent variable.

f PreCalculusCoach.com

Analyzing Graphs of Functions and Relations Guided Notes

Sample Problem 3: Use the graph of each function to approximate its zeros. Then find the zeros of each function algebraically.

a.
$$f(x) = -x^2 - 2x$$

 $Zeros = ?$
 $f(x) = -x^2 - 2x$
b. $f(x) = x^3 + 3$
 $Zeros = ?$
 $f(x) = x^3 + 3$
 $f(x) = x^3 + 3$

Graphically

Graphically

Algebraically

Algebraically

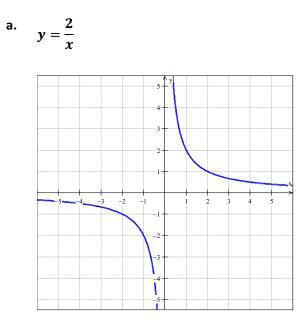
Symmetry of Graphs

There are two possible types of symmetry that graphs of functions can have.

1. Line symmetry - graphs can be folded along a line so that the two halves match exactly.

2. Point symmetry - graphs can be rotated 180° with respect to a point and appear unchanged.

3

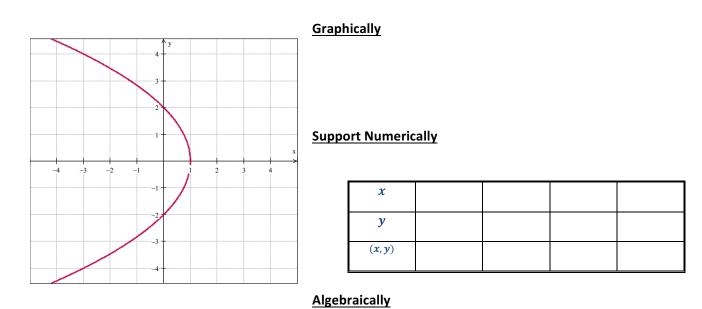


Analyzing Graphs of Functions and Relations Guided Notes

Tests for Symmetry

Graphical Test	Algebraic Test
The graph of a relation is symmetric with respect to the x -axis if and only if for every point (x, y) , on the graph, the point $(x, -y)$, is also on the graph.	Replacing \boldsymbol{y} with - \boldsymbol{y} produces an equivalent equation.
The graph of a relation is symmetric with respect to the y -axis if and only if for every point (x, y) on the graph, the point $(-x, y)$ is also on the graph.	Replacing x with - x produces an equivalent equation.
The graph of a relation is symmetric with respect to the origin if and only if for every point (x, y) on the graph, the point $(-x, -y)$ is also on the graph.	Replacing x with - x and y with - y produces an equivalent equation.

Sample Problem 4: Use the graph of each equation to test for symmetry with respect to the x -axis, y -axis, and the origin. Support the answer numerically. Then confirm algebraically.


Graphically

Support Numerically

x			
у			
(x, y)			

Algebraically

Analyzing Graphs of Functions and Relations Guided Notes $4x + y^2 = 4$ b.

Identify Even and Odd Functions

If f(-x) = f(x), then the function is even, and symmetric to the y-axis. If f(-x) = -f(x), then the function is odd, and symmetric to the origin.

Sample Problem 5: Determine whether the following are even, odd, or neither.

a. $f(x) = x^4 + 4$

f PreCalculusCoach.com

Name: Period: Date: Analyzing Graphs of Functions and Relations Guided Notes b. $g(x) = 9x^5 - x^3$

c. $h(t) = t^2 + t$

f PreCalculusCoach.com