\qquad
\qquad

Analyzing Graphs of Functions and Relations Exit Quiz

Multiple choices

1. Which of the following is an even function?
a.) $f(x)=\sqrt{x}$
b.) $f(x)=\frac{1}{x}$
c.) $f(x)=|x|$
d.) $(x-2)^{2}$
2. Given that $(\mathbf{3}, \mathbf{1})$ is a point on a graph that is symmetric with respect to the origin, what other point is also on the graph?
a.) $(3,1)$
b.) $(-3,-1)$
c.) $(-3,1)$
d.) $(3,-1)$
3. Complete the chart.

Tests for Symmetry	The graph of a relation is symmetric with respect to the x-axis	The graph of a relation is symmetric with respect to the y-axis	The graph of a relation is symmetric with respect to the origin
(x, y)			

4. Determine whether the following are even, odd, or neither.
a. $f(x)=3 x^{5}-x^{3}-x$
b. $\quad h(y)=2 y^{2}-6 y$
\qquad
\qquad

Analyzing Graphs of Functions and Relations Exit Quiz

5. Use the graph of function to approximate its zeros. Then find the zeros of each function algebraically.

$$
f(x)=2 x^{3}-3 x
$$

\qquad Date: \qquad

Analyzing Graphs of Functions and Relations Exit Quiz ANSWERS

Multiple choices

1. Which of the following is an even function?
a.) $f(x)=\sqrt{x}$
b.) $f(x)=\frac{1}{x}$
c.) $f(x)=|x|$
d.) $(x-2)^{2}$
2. Given that $(\mathbf{3}, \mathbf{1})$ is a point on a graph that is symmetric with respect to the origin, what other point is also on the graph?
a.) $(3,1)$
b.) $(-3,-1)$
c.) $(-3,1)$
d.) $(3,-1)$
3. Complete the chart.

Tests for Symmetry	The graph of a relation is symmetric with respect to the x-axis	The graph of a relation is symmetric with respect to the y-axis	The graph of a relation is symmetric with respect to the origin
(x, y)	$(x,-y)$	$(-x, y)$	$(-x,-y)$

4. Determine whether the following are even, odd, or neither.
a. $f(x)=3 x^{5}-x^{3}-x$

$$
\begin{aligned}
& f(-x)=3(-x)^{5}-(-x)^{3}-(-x) \\
& f(-x)=-3 x^{5}+x^{3}+x \\
& f(-x)=-\left(3 x^{5}-x^{3}-x\right) \\
& f(-x)=-f(x)
\end{aligned}
$$

The function is odd.
b. $\quad h(y)=2 y^{2}-6 y$
$h(-y)=2(-y)^{2}-6(-y)$
$h(-y)=2 y^{2}+6 y$
$h(-y) \neq-h(y)$
$\boldsymbol{h}(-y) \neq \boldsymbol{h}(\boldsymbol{y})$
The function is neither.
\qquad
\qquad

Analyzing Graphs of Functions and Relations Exit Quiz

5. Use the graph of function to approximate its zeros. Then find the zeros of each function algebraically.

$$
f(x)=2 x^{3}-3 x
$$

Graphically
$f(x)=2 x^{3}-3 x$
x-intercepts $-1.2,0$ and 1.2
Algebraically
$f(x)=0$
$2 x^{3}-3 x=0$
$x\left(x^{2}-3\right)=0$
$x(x-\sqrt{3})(x+\sqrt{3})=0$
$x=0$
$x-\sqrt{3}=0 \quad x=\sqrt{3} \approx 1.71$
$x+\sqrt{3}=0 \quad x=-\sqrt{3} \approx-1.71$
The zeros of f are $0, \sqrt{3}$ and $-\sqrt{3}$

