Analyzing Graphs of Functions and Relations Bell work

1. Complete the following statement.

- **a.** A point where the graph intersects or meets the x or y axis is called _____.
- **b.** The zeros of function f(x) are _____ for which f(x) = 0

2. Write T for true or F for false

- **a.** To find the zeros of a function, set the function equal to zero and solve for the independent variable.
- **b.** If f(x) is an odd function, then the graph is symmetric to the origin.

Multiple Choices

3. The zero of
$$f(x) = 2x - 4$$

a. (0,2)

b. (2,0)

c. (-4,0)

4. Given the function $f(x) = -x^2 + 3x - 5$, what is f(2)?

a. 3

b. -3

c. 9

5. The domain of $f(x) = \frac{2}{x-5}$

a. $(-\infty, 5) \cup (5, \infty,)$

 $b. \qquad (-\infty, 5)$

c. $(-\infty, 5] \cup [5, \infty,)$

Name: _____ Period: _____ Date: _____

Analyzing Graphs of Functions and Relations Bell work

ANSWERS

1. Complete the following statement.

a. A point where the graph intersects or meets the x or y axis is called an intercept.

b. The zeros of function f(x) are x –values for which f(x) = 0

2. Write T for true or F for false

a. To find the zeros of a function, set the function equal to zero and solve for the independent variable.

_

T

b. If f(x) is an odd function, then the graph is symmetric to the origin.

T

Multiple Choices

3. The zero of f(x) = 2x - 4

a. (0,2)

b. (2,0)

c. (-4,0)

4. Given the function $f(x) = -x^2 + 3x - 5$, what is f(2)?

a.

b. —

c. 9

5. The domain of $f(x) = \frac{2}{x-5}$

a. $(-\infty, 5) \cup (5, \infty,)$

 $b. \qquad (-\infty, 5)$

c. $(-\infty, 5] \cup [5, \infty,)$