Use a graph of each function to estimate the indicated function values.

1.
$$f(x) = -x + 3$$

$$f(-1) = ?$$
 $f(0) = ?$ $f(3) = ?$

$$f(0) = ?$$

$$f(3) = 3$$

f.
$$f(x) = x^3 - 3x^2 + 2$$

 $f(-1) = ?$ $f(0) = ?$ $f(2) = ?$

Graphically

Algebraically

Graphically

Algebraically

Use the graph of each function to approximate its y –intercept. Then find the y –intercept algebraically.

3.
$$f(x) = x^2 + 2x + 3$$

Graphically

Algebraically

5.
$$f(x) = 2x - 3$$

Graphically

Algebraically

4.
$$f(x) = \sqrt{x+2} + 2$$

Graphically

Algebraically

6.
$$f(x) = |x+2|$$

Graphically

Use the graph of each function to approximate its zeros. Then find the zeros of each function algebraically.

7.
$$f(x) = -x^2 - 2x + 3$$

Graphically

Algebraically

8.
$$f(x) = 2x^3 - x^2 - 3x$$

Graphically

Algebraically

9.
$$f(x) = x^3 - 6x^2 - 12x + 8$$

Graphically

Use the graph of each equation to test for symmetry with respect to the x -axis, y -axis, and the origin. Support the answer numerically. Then confirm algebraically.

10.
$$y = \sqrt{x^2 + 2}$$

Graphically

Support Numerically

x			
y			
(x, y)			

Algebraically

11.
$$y = \sqrt[3]{x}$$

Graphically

Support Numerically

x			
y			
(x, y)			

12. $2x^2 + 3y^2 = 16$

Graphically

Symmetric with respect to x -axis

Algebraically

Support Numerically

х		
y		
(x,y)		

Symmetric with respect to y -axis

Algebraically

Support Numerically

x		
у		
(x,y)		

Symmetric with respect to origin

Algebraically

Support Numerically

x		
у		
(x,y)		

Determine whether the following are even, odd, or neither.

13.
$$f(x) = x^3 + 2x$$

14.
$$g(t) = 2t^4 + t^2$$

15.
$$h(y) = y^4 - 5y^2 - 3y$$

SOLVE REAL WORLD PROBLEM

The temperature T in degrees Fahrenheit t hours after 6 AM is given by $T(t) = -\frac{1}{2}t^2 - 8t + 3$, 16. for 0 < t < 10. Find T(0), T(2) and T(6) graphically and algebraically.

Graphically

ANSWERS

Use a graph of each function to estimate the indicated function values.

1.
$$f(x) = -x + 3$$

$$f(-1) = ?$$

$$f(0) = ?$$
 $f(3) = ?$

$$f(3) = 3$$

$$f(-1) = ?$$
 $f(0) = ?$ $f(2) = ?$

Graphically

$$f(-1) = \frac{4}{4}$$

$$f(0) = 3$$

$$f(3) = 0$$

Graphically

$$f(-1) = -2$$

$$f(0) = \frac{2}{2}$$

$$f(0) = \frac{2}{2}$$
 $f(2) = \frac{-2}{2}$

Algebraically

$$f(-1) = -(-1) + 3 = 1 + 3 = 4$$

$$f(0) = -0 + 3 = 3$$

$$f(3) = -3 + 3 = 0$$

$$f(-1) = (-1)^3 - 3(-1)^2 + 2 = -1 - 3 + 2 = -2$$

$$f(0) = 0^3 - 3 * 0^2 + 2 = 2$$

$$f(2) = 2^3 - 3 * 2^2 + 2 = 8 - 12 + 2 = -2$$

Use the graph of each function to approximate its y -intercept. Then find the y -intercept algebraically.

3.
$$f(x) = x^2 + 2x + 3$$

Graphically

$$f(x) = x^2 + 2x + 3$$
 $y - intercept = 3$

Algebraically y -intercept occurs where x = 0.

$$f(0) = 0^2 + 2 * 0 + 3$$

$$f(0) = 3$$

$$y$$
 – intercept = 3

5.
$$f(x) = 2x - 3$$

Graphically

$$f(x) = 2x - 3$$
 $y - intercept = -3$

Algebraically y-intercept occurs where x = 0.

$$f(0) = 2 * 0 - 3$$

$$f(0) = -3$$

$$y - intercept = -3$$

$$4. \quad f(x) = \sqrt{x+2} + 2$$

Graphically

$$f(x) = \sqrt{x+2} + 2$$

$$y - intercept \approx 3.2$$

Algebraically
$$y$$
-intercept occurs where $x = 0$.

$$f(0) = \sqrt{0+2} + 2 = \sqrt{2} + 2$$

$$f(0) \approx 3.41$$

$$y - intercept \approx 3.41$$

6.
$$f(x) = |x+2|$$

Graphically

$$f(x) = |x+2|$$

$$y$$
 – intercept = 2

Algebraically y intercept occurs where
$$x = 0$$
.

$$f(0) = |0+2|$$

$$f(0) = 2$$

$$y - intercept = 2$$

Use the graph of each function to approximate its zeros. Then find the zeros of each function algebraically.

7.
$$f(x) = -x^2 - 2x + 3$$

Graphically

x – intercepts – 3 and 1

Algebraically f(x) = 0 $-x^2 - 2x + 3 = 0$ (x+3)(x-1)=0x = -3 and x = 1

The zeros of f are -3 and 1

Graphically

$$x - intercepts -1, 0 and 1.5$$

Algebraically f(x) = 0 $2x^3 - x^2 - 3x = 0$ x(x+1)(2x-3)=0 $x = -1 \qquad x = 0 \quad and \quad x = 1.5$

The zeros of f are -1,0 and 1.5

9.
$$f(x) = x^3 - 6x^2 - 12x + 8$$

Graphically

$$x$$
 – intercepts – 2

Algebraically f(x) = 0 $x^3 - 6x^2 - 12x + 8$ $(x+2)(x+2)(x+2) = (x+2)^3$ x = -2The zero of f is -2

Use the graph of each equation to test for symmetry with respect to the x -axis, y -axis, and the origin. Support the answer numerically. Then confirm algebraically.

10.
$$y = \sqrt{x^2 + 2}$$

Graphically

The graph appears to be symmetric with respect to the y -axis because for every point (x, y) on the graph, there is a point (-x, y).

Support Numerically

There is a table of values to support this conjecture.

x	-2	-1	0	1	2
y	$\sqrt{6}$	$\sqrt{3}$	$\sqrt{2}$	$\sqrt{3}$	$\sqrt{6}$
(x,y)	$(-2,\sqrt{6})$	$(-1,\sqrt{3})$	$(0,\sqrt{2})$	$(1,\sqrt{3})$	$(2,\sqrt{6})$

Algebraically

Because $y = \sqrt{(-x)^2 + 2}$ is equivalent to $\sqrt{x^2 + 2}$, the graph is symmetric with respect to the y-axis.

$11. \quad y = \sqrt[3]{x}$

Graphically

The graph appears to be symmetric with respect to the **origin** because for every point (x, y) on the graph, there is a point (-x, -y).

Support Numerically

There is a table of values to support this conjecture.

x	-2	-1	0	1	2
y	$-\sqrt[3]{2}$	-1	0	1	$\sqrt[3]{2}$
(x,y)	$(-2,-\sqrt[3]{2})$	(-1,-1)	(0,0)	(1,1)	$(2, \sqrt[3]{2})$

Algebraically

Because $-y = \sqrt[3]{-x}$ is equivalent to $y = \sqrt[3]{x}$, the graph is symmetric with respect to the **origin**.

Name: ______ Period: _____ Date: _____

Analyzing Graphs of Functions and Relations Assignment

$$12. \quad 2x^2 + 3y^2 = 16$$

Graphically

The graph appears to be:

- symmetric with respect to the x -axis because for every point (x, y) on the graph, there is a point (x, -y),
- symmetric with respect to the y -axis because for every point (x, y) on the graph, there is a point (-x, y),
- symmetric with respect to the **origin** because for every point (x, y) on the graph, there is a point (-x, -y).

Symmetric with respect to x -axis

Algebraically

Because $2x^2 + 3(-y)^2 = 16$ is equivalent to $2x^2 + 3y^2 = 16$, the graph is symmetric with respect to x-axis.

Support Numerically

x	2	2	1	1
у	$\frac{2\sqrt{6}}{3}$	$-\frac{2\sqrt{6}}{3}$	$-\frac{\sqrt{42}}{3}$	$\frac{\sqrt{42}}{3}$
(x,y)	$(2,\frac{2\sqrt{6}}{3})$	$(2,-\frac{2\sqrt{6}}{3})$	$(1,-\frac{\sqrt{42}}{3})$	$(1,\frac{\sqrt{42}}{3})$

Symmetric with respect to y -axis

Algebraically

Because $2(-x)^2 + 3y^2 = 16$ is equivalent $to2x^2 + 3y^2 = 16$, the graph is symmetric with respect to the y-axis.

Support Numerically

x	-2	-1	1	2
у	$\frac{2\sqrt{6}}{3}$	$\frac{\sqrt{42}}{3}$	$\frac{\sqrt{42}}{3}$	$\frac{2\sqrt{6}}{3}$
(x,y)	$(-2,\frac{2\sqrt{6}}{3})$	$(-1, \frac{\sqrt{42}}{3})$	$(1,\frac{\sqrt{42}}{3})$	$(2,\frac{2\sqrt{6}}{3})$

Symmetric with respect to origin

Algebraically

Because $2(-x)^2 + 3(-y)^2 = 16$ is equivalent to $2x^2 + 3y^2 = 16$, the graph is symmetric with respect to the **origin**.

Support Numerically

x	-2	-1	1	2
у	$-\frac{2\sqrt{6}}{3}$	$-\frac{\sqrt{42}}{3}$	$\frac{\sqrt{42}}{3}$	$\frac{2\sqrt{6}}{3}$
(x,y)	$(-2, -\frac{2\sqrt{6}}{3})$	$(-1, -\frac{\sqrt{42}}{3})$	$(1,\frac{\sqrt{42}}{3})$	$(2,\frac{2\sqrt{6}}{3})$

Name:

______ Period: ______ Date: _____

Analyzing Graphs of Functions and Relations Assignment

Determine whether the following are even, odd, or neither.

13.
$$f(x) = x^3 + 2x$$

$$f(x) = x^3 + 2x$$

 $f(-x) = (-x)^3 + 2(-x)$
 $f(-x) = -x^3 - 2x$
 $f(-x) = -(x^3 + 2x)$
 $f(-x) = -f(x)$ The function is odd.

14.
$$g(t) = 2t^4 + t^2$$

$$g(t) = 2t^4 + t^2$$

 $g(-t) = 2(-t)^4 + (-t)^2$
 $g(-t) = 2t^4 + t^2$

15.
$$h(y) = y^4 - 5y^2 - 3y$$

$$g(-t) = g(t)$$
 The function is even.

$$h(y) = y^4 - 5y^2 - 3y$$

$$h(-y) = (-y)^4 - 5(-y)^2 - 3(-y)$$

$$h(-y) = y^4 - 5y^2 + 3y$$

$$h(-y) \neq h(y)$$
 $h(-y) \neq -h(y)$
The function is neither

SOLVE REAL WORLD PROBLEM

16. The temperature T in degrees Fahrenheit t hours after 6 AM is given by $T(t) = -\frac{1}{2}t^2 - 8t + 3$, for 0 < t < 10. Find T(0), T(2) and T(6) graphically and algebraically.

Graphically

Algebraically

$$T(0) = -\frac{1}{2}t^2 - 8t + 3$$

$$T(0) = -\frac{1}{2}*0 - 8t*0 + 3 = 3$$

$$T(0) = 3$$

$$T(2) = -\frac{1}{2} * 2^{2} - 8 * 2 + 3$$

$$T(2) = -\frac{1}{2} * 4 - 16 + 3$$

$$T(2) = -2 - 16 + 3$$

$$T(2) = -15$$

$$T(6) = -\frac{1}{2}6^2 - 8 * 6 + 3$$

$$T(6) = -\frac{1}{2} * 36 - 8 * 6 + 3$$

$$T(6) = -18 - 48 + 3$$

T(6) = -63